太湖蓝藻水华暴发机制与控制对策
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism and control strategy of cyanobacterial bloom in Lake Taihu
  • 作者:杨柳燕 ; 杨欣 ; 任丽曼 ; 钱新 ; 肖琳
  • 英文作者:YANG Liuyan;YANG Xinyan;REN Liman;QIAN Xin;XIAO Lin;State Key Laboratory of Pollution Control and Resource Reuse,School of the Environment,Nanjing University;
  • 关键词:太湖 ; 蓝藻水华 ; 暴发机制 ; ;
  • 英文关键词:Lake Taihu;;cyanobacterial bloom;;outbreak mechanism;;nitrogen;;phosphorus
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:南京大学环境学院污染控制与资源化研究国家重点实验室;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家水体污染控制与治理科技重大专项(2017ZX07204)资助
  • 语种:中文;
  • 页:FLKX201901002
  • 页数:10
  • CN:01
  • ISSN:32-1331/P
  • 分类号:20-29
摘要
湖泊蓝藻水华暴发由于引发水生态系统的灾害和饮用水安全风险而成为国内外研究的热点之一.太湖蓝藻水华暴发原因多样,其中蓝藻自身的特性是水华暴发的内因,太湖的地理、水文和气象特征为蓝藻水华暴发提供了合适的温度和水动力条件,是蓝藻水华暴发的外因,湖泊草-藻型生态系统的转变以及氮、磷营养盐的高负荷输入更利于蓝藻生长,湖泊氮、磷营养盐四重循环是蓝藻水华不断暴发的维持机制,蓝藻水华暴发与氮、磷营养盐浓度之间存在交互作用关系.太湖蓝藻水华的控制应以陆源控源截污为基础,增加湖泊营养盐输出为重点,实现疏堵有机结合,其中恢复水生植被,重建草-藻结合型水生态系统是太湖湖泊生态修复的关键所在.
        Cyanobacterial bloom has become the focus of all over the world because of its ecological risk and drinking water crisis.There are many reasons contribute to the cyanobacterial bloom in Lake Taihu. The characteristic of cyanobacteria themselves is the internal causes. As a subtropical shallow lake,Lake Taihu provides suitable temperature and hydrodynamic condition for the cyanobacterial bloom due to its geographical and hydrological meteorological characteristics. The shift from grass-shaped to algaeshaped ecosystem and the input of high load nitrogen and phosphorus nutrients are beneficial to the growth of cyanobacteria. In addition,the quadruple cycle of nitrogen and phosphorus intensifies cyanobacterial bloom. Cyanobacterial bloom interacts aqueous nitrogen and phosphorus concentrations. In order to control bloom in Lake Taihu,we should increase the output of nutrients based on cutting off the source of nitrogen and phosphorus. Above all,it is the key of ecological restoration of Lake Taihu to sequester and strengthen the recovery of macrophytes so that the macrophytic and algal ecosystems can be reconstructed.
引文
[1] Paerl HW,Otten TG. Harmful cyanobacterial blooms:causes,consequences,and controls. Microbial Ecology,2013,65(4):995-1010. DOI:10.1007/s00248-012-0159-y.
    [2] Singh S,Rai PK,Chau R et al. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Research,2015,69:131-142. DOI:10.1016/j.watres.2014.11.015.
    [3] Liu EF,Yang XD,Shen J et al. Environmental response to climate and human impact during the last 400 years in Taibai Lake catchment,middle reach of Yangtze River,China. Science of the Total Environment,2007,385(1/2/3):196-207.DOI:10.1016/j.scitotenv.2007.06.041.
    [4] Yang L,Ding JH. A measurement of population’s driving effects on water resources consumption in the progress of urbanization:A case study of Taihu basin. South China Population,2014,29(2):72-80.[杨亮,丁金宏.城镇化进程中人口因素对水资源消耗的驱动作用分析——以太湖流域为例.南方人口,2014,29(2):72-80.]
    [5] Zhang YD,Su YL,Liu ZW et al. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang,Lake Taihu basin,Eastern China. Science of the Total Environment,2017,613:907-918. DOI:10.1016/j.scitotenv.2017.09.185.
    [6] Deng JC,Wang YS,Liu X et al. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake. Environmental Monitoring and Assessment,2016,188:296. DOI:10.1007/s10661-016-5301-8.
    [7] Wu YY,Zhang GF. Water environment changes of Taihu Basin since the 1950s and its driving factors. Economic Geography,2014,34(11):151-157.[吴月芽,张根福. 1950年代以来太湖流域水环境变迁与驱动因素.经济地理,2014,34(11):151-157.]
    [8] Qin BQ,Zhu GW,Gao G et al. A drinking water crisis in Lake Taihu,China:linkage to climatic variability and lake management. Environmental Management,2010,45(1):105-112. DOI 10.1007/s00267-009-9393-6.
    [9] Dai XL,Qian PQ,Ye L et al. Changes in nitrogen and phosphorus concentrations in Lake Taihu,1985-2015. J Lake Sci,2016,28(5):935-943. DOI:10. 18307/2016. 0502.[戴秀丽,钱佩琪,叶凉等.太湖水体氮、磷浓度演变趋势(1985-2015年).湖泊科学,2016,28(5):935-943.]
    [10] Paerl HW,Otten TG. Harmful cyanobacterial blooms:causes,consequences,and controls. Microbial Ecology,2013,65(4):995-1010. DOI:10.1007/s00248-012-0159-y.
    [11] Paerl HW,Paul VJ. Climate change:Links to global expansion of harmful cyanobacteria. Water Research,2012,46:1349-1363. DOI:10.1016/j.watres.2011.08.002.
    [12] Knoll AH. Cyanobacteria and earth history. In:Herrero A,Flores E eds. The Cyanobacteria:Molecular biology,genomics,and evolution. Norfolk,UK:Caister Academic Press,2008:484.
    [13] Gorham T,Jia Y,Shum CK et al. Ten-year survey of cyanobacterial blooms in Ohio’s waterbodies using satellite remotesensing. Harmful Algae,2017,66:13-19. DOI:10.1016/j.hal.2017.04.013.
    [14] Su CD. Investigation on the exopolysaccharide from marine Cyanothece sp. 133[Dissertation]. Qingdao:Ocean University of China,2005.[苏传东.蓝杆藻113菌株(Cyanothece sp.113)胞外多糖的研究[学位论文].青岛:中国海洋大学,2005.]
    [15] Zhang YS,Li HY,Kong FX et al. Role of colony intercellular space in the Cyanobacteria bloom-forming. Environmental Science,2011,32(6):1602-1607. DOI:10.13227/j.hjkx.2011.06.002.[张永生,李海英,孔繁翔等.群体细胞间空隙在微囊藻水华形成过程中的浮力调节作用.环境科学,2011,32(6):1602-1607.]
    [16] Zhang M,Kong FX,Tan X et al. Biochemical,morphological,and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology,2007,23:663-670. DOI:10. 1007/s11274-006-9280-8.
    [17] Balskus EP,Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in Cyanobacteria. Science,2010,329:1653-1656. DOI:10.1126/science.1193637.
    [18] Kong FX,Ma HR,Gao JF et al. The theory and practice of prevention,forecast and warning on cyanobacteria bloom in Lake Taihu. J Lake Sci,2009,21(3):314-328. DOI:10.18307/2009.0302.[孔繁翔,马荣华,高俊峰等.太湖蓝藻水华的预防、预测和预警的理论与实践.湖泊科学,2009,21(3):314-328.]
    [19] Wang J,Zhou TY,Gao WC et al. Growth inhibition and recovery from low oxidation reduction potential to Microcystis aeruginosa. J Lake Sci,2012,24(4):528-534. DOI:10.18307/2012.0404.[王健,周天艺,高文程等.低氧化还原电位对铜绿微囊藻(Microcystis aeruginosa)生长的抑制及恢复的影响.湖泊科学,2012,24(4):528-534.]
    [20] Gan NQ,Wei N,Song LR. Recent progress in research of the biological function of microcystins. J Lake Sci,2017,29(1):1-8. DOI:10.18307/2017.0101[甘南琴,魏念,宋立荣.微囊藻毒素生物学功能研究进展.湖泊科学,2017,29(1):1-8.]
    [21] Liu GF,Han SQ,Liu XZ et al. The environmental effects of algae bloom cluster:Impact on the antioxidant enzyme activities of water hyacinth(Eichharnia crassipes). J Lake Sci,2016,28(1):31-39. DOI:10.18307/2016.0104.[刘国锋,韩士群,刘学芝等.藻华聚集的环境效应:对漂浮植物水葫芦(Eichharnia crassipes)抗氧化酶活性的影响.湖泊科学,2016,28(1):31-39.]
    [22] Sun HJ,Lu K,Minter Ewan JA et al. Combined effects of ammonia and microcystin on survival,growth,antioxidant responses,and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. Journal of Hazardous Materials,2012,221/222(4):213-219. DOI:10.1016/j.jhazmat.2012.04.036.
    [23] Yang Z,Zhang M,Shi XL et al. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu(China). Water Research,2016,103:302-310. DOI:10.1016/j.watres.2016.07.047.
    [24] Feng LJ,Liu SY,Wu WX et al. Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors. Journal of Microbiology,2016,54(7):468-476. DOI 10.1007/s12275-016-6037-4.
    [25] Li W,Qin BQ,Zhu GW. Forecasting short-term cyanobacterial blooms in Lake Taihu,China,using a coupled hydrodynamic–algal biomass model. Ecohydrology,2014,7(2):794-802. DOI:10.1002/eco.1402.
    [26] Zhang Y,Lin S,Qian X et al. Temporal and spatial variability of chlorophyll a concentration in Lake Taihu using MODIS time-series data. Hydrobiologia,2011,661(1):235-250. DOI:10.1007/s10750-010-0528-9.
    [27] Wu TF,Qin BQ,Brookes J et al. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Science of the Total Environment,2015,518:24-30. DOI:10.1016/j.scitotenv.2015.02.090.
    [28] Shi K,Zhang Y,Zhou Y et al. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu:Responses to nutrient enrichment and meteorological factors. Scientific Reports,2017,7:40326. DOI:10.1038/srep40326.
    [29] Visser PM,Verspagen JMH,Sandrini G. How rising CO2and global warming may stimulate harmful cyanobacterial blooms.Harmful Algae,2016,54:145-159. DOI:10.1016/j.hal.2015.12.006.
    [30] Paerl HW. Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. Life,2014,4(4):988-1012. DOI:10.3390/life4040988.
    [31] Brown JH,Gillooly JF,Allen AP et al. Toward a metabolic theory of ecology. Ecology,2004,85(7):1771-1789. DOI:10.1890/03-9000.
    [32] Peeters F,Straile D,Lorke A et al. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology,2007,13(9):1898-1909. DOI:10.1111/j.1365-2486.2007.01412.x.
    [33] Wagner C,Adrian R. Cyanobacteria dominance:quantifying the effects of climate change. Limnology and Oceanography,2009,54:2460-2468. DOI:10.4319/lo.2009.54.6_part_2.2460.
    [34] Zeng J,Yang LY,Xiao L et al. Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds. J Lake Sci,2007,19(4):382-389. DOI:10.18307/2007.0405.[曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用.湖泊科学,2007,19(4):382-389.]
    [35] Wu YS,Yu GR. Purification of Dianchi Lake by radical submerged hydrophyte(Potamogeton crispus). Acta Scientiae Circumstantiae,1991,11(4):411-416.[吴玉树,余国荣.根生沉水植物菹草(Potamogeton crispus)对滇池水体的净化作用.环境科学学报,1991,11(4):411-416.]
    [36] Sun WH,Yu ZW,Yu SW. The harness of eutrophic water body by water-hyacinth. Acta Scientiae Circumstantiae,1989,9(2):188-195.[孙文浩,俞子文,余叔文.城市富营养化水域的生物治理和风眼莲抑制藻类生长的机理.环境科学学报,1989,9(2):188-195.]
    [37] Li FM,Hu HY. Allelopathy and inhibitory effect of extracts from macrophytes on algae growth. China Water&Wastewater,2004,11:18-21.[李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用.中国给水排水,2004,11:18-21.]
    [38] Jin SD,Li YH,Ni CH et al. Uptake by Potamogeton crispus of nitrogen and phosphorus from water and some affecting factors. Acta Ecologica Sinic,1994,14(2):168-173.[金送笛,李永函,倪彩虹等.菹草对水中氮磷的吸收及若干影响因素.生态学报,1994,14(2):168-173.]
    [39] K9rner S. Loss of submerged macrophyte in shallow lakes in North-Eastern Germany. Int Rev Hydrobiol,2002,87:375-384.
    [40] Best EPH,De Vries D,Reins A. The macrophyte in the Loosdrecht Lakes:A story of their decline in the course of eutrophication. Verh Int Verein Limnol,1984,22:868-875.
    [41] Guo HC,Wang XY,Yi X. Study on eutrophication control strategy based on the succession of water ecosystem in the Dianchi Lake. Geographical Research,2013,32(6):998-1006.[郭怀成,王心宇,伊璇.基于滇池水生态系统演替的富营养化控制策略.地理研究,2013,32(6):998-1006.]
    [42] Qin BQ,Gao G,Zhu GW et al. Lake eutrophication and its ecosystem response. Chin Sci Bull,2013,58(10):855-864.DOI:10.1007/s11434-012-5560-x.[秦伯强,高光,朱广伟等.湖泊富营养化及其生态系统响应.科学通报,2013,58(10):855-864.]
    [43] Scheffer M,Hosper SH,Meijer ML et al. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution,1993,8(8):275-279. DOI:10.1016/0169-5347(93)90254-M.
    [44] Qin BQ. Progress and prospect on the eco-environmental research of Lake Taihu. J Lake Sci,2009,21(4):445-455.DOI:10.18307/2009.0401.[秦伯强.太湖生态与环境若干问题的研究进展及其展望.湖泊科学,2009,21(4):445-455.]
    [45] Chen XF. Investigation of the regional differences and nitrogenous cycling in China’s lakes[Dissertation]. Nanjing:Nanjing University,2012.[陈小锋.我国湖泊富营养化区域差异性调查及氮素循环研究[学位论文].南京:南京大学,2012.]
    [46] Ma JR,Qin BQ,Wu P. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake:Lake Taihu,China. Journal of Environmental Sciences,2015,27:80-86. DOI:10.1016/j.jes.2014.05.042.
    [47] Yamamoto Y,Shiah FK,Chen YL. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann Limnol-Int J Lim,2011,47:167-173. DOI:10.1051/limn/2011013.
    [48] Ma JR,Brookes JD,Qin BQ. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu,China. Harmful Algae,2014,31:136-142. DOI:10.1016/j.hal.2013.10.016.
    [49] Wilhelm SW,Farnsley SE,Lecleir GR. The relationships between nutrients,cyanobacterial toxins and the microbial community in Taihu(Lake Tai),China. Harmful Algae,2011,10(2):207-215. DOI:10.1016/j.hal.2010.10.001.
    [50] Xu H,Paerl HW,Qin BQ. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu,China.Limnology and Oceanography,2010,55(1):420-432. DOI:10.4319/lo.2010.55.1.0420.
    [51] Chuai XM,Ding W,Chen XF et al. Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu,China.Ecological Engineering,2011,37(6):842-849. DOI:10.1016/j.ecoleng.2011.01.001.
    [52] Shi XL,Yang LY,Niu XJ et al. Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiological Research,2003,158(4):345-352. DOI:10.1078/0944-5013-00214.
    [53] Jiang LJ,Yang LY,Xiao L et al. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium(Pseudomonas sp.). Hydrobiologia,2007,581:161-165. DOI:10.1007/s10750-006-0518-0.
    [54] Yuan L,Zhu W,Xiao L et al. Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria,Pseudomonas. Aquatic Ecology,2009,43(4):859-866. DOI:10.1007/s10452-008-9227-2.
    [55] Zeng J,Yang LY,Li JY et al. Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis(DGGE)and multivariate analysis techniques. World Journal of Microbiology&Biotechnology,2009,25(2):225-233. DOI:10.1007/s11274-008-9883-3.
    [56] Zhao XQ,Yang LY,Yu ZY et al. Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel electrophoresis of amplied 16S rRNA fragments. Journal of Environmental Sciences,2008,20(2):224-230.DOI:10.1016/S1001-0742(08)60035-2.
    [57] Zhang TX,Wang XR,Jin XC et al. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake(Lake Taihu). Environmental Pollution,2007,150(2):288-294. DOI:10.1016/j.envpol.2007.01.007.
    [58] Geng JJ,Niu XJ,Jin XC et al. Simultaneous monitoring of phosphine and of phosphorus species in Taihu Lake sediments and phosphine emission from lake sediments. Biogeochemistry,2005,76(2):283-298. DOI:10. 1007/s10533-005-5422-6.
    [59] Niu XJ,Geng JJ,Wang XR et al. Temporal and spatial distributions of phosphine in Taihu Lake,China. Science of the Total Environment,2004,323(1/2/3):169-178. DOI:10.1016/j.scitotenv.2003.10.017.
    [60] Wang S,Qian X,Han BP et al. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer,in southern China. Water Research,2012,46(8):2591-2604.
    [61] Zhang RB,Qian X,Li HM. Selection of optimal river water quality improvement programs using QUAL2K:A case study of Taihu Lake Basin,China. Science of the Total Environment,2012,431:278-285. DOI:10.1016/j.scitotenv.2012.05.063.
    [62] Zhu MY,Zhu GW,Zhao LL et al. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu,China. Environmental Science and Pollution Research,2013,20(3):1803-1811. DOI 10. 1007/s11356-012-1084-9.
    [63] Zhu W,Tan YQ,Wang RC et al. The trend of water quality variation and analysis in typical area of Lake Taihu,2010-2017. J Lake Sci,2018,30(2):296-305. DOI:10.18307/2018.0202.[朱伟,谈永琴,王若辰等.太湖典型区2010-2017年间水质变化趋势及异常分析.湖泊科学,2018,30(2):296-305.]
    [64] Zhu MY,Zhu GW,Nurminen L et al. The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake(Lake Taihu,China). PLoS One,2015,10(6). DOI:10. 1371/journal.pone.0127915.
    [65] Chen XF,Chuai XM,Zeng J et al. Nitrogenous fluxes and its self-purification capacity in Lake Taihu. Environmental Science,2012,33(7):2309-2314. DOI:10.13227/j.hjkx.2012.07.032.[陈小锋,揣小明,曾巾等.太湖氮素出入湖通量与自净能力研究.环境科学,2012,33(7):2309-2314.]
    [66] Liu Z,Qian X,Gao HL et al. The effect of water transfer in the ecological restoration Zone of the Taihu Lake by the allocation of submerged community. Jiangsu Agricultural Sciences,2016,44(5):480-483.[刘喆,钱新,高海龙等.沉水植物群落配置对太湖贡湖生态修复区的调水效果.江苏农业科学,2016,44(5):480-483.]
    [67] Schindler DW. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography,2006,51:356-363. DOI:10.4319/lo.2006.51.1_part_2.0356.
    [68] Carpenter SR. Eutrophication of aquatic ecosystems:bistability and soil phosphorus. PNAS,2005,102:1002-1005. DOI:10.1073/pnas.0503959102.
    [69] Paerl HW,Scott JT,Mc Carthy MJ et al. It takes two to tango:When and where dual nutrient(N&P)reductions are needed to protect lakes and downstream ecosystems. Environmental Science&Technology,2016,50(20):10805-10813.DOI:10.1021/acs.est.6b02575.
    [70] Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science,1983,221(4611):669-671.
    [71] Smith VH. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography,2006,51:377-384.