750kV/330kV混压同塔四回输电线路电磁环境研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Electromagnetic Environment of the 750kV/330kV Mixed Voltage Quadruple-circuit Transmission Line on the Same Tower
  • 作者:郭天伟 ; 罗日成 ; 杨雅倩 ; 史志强 ; 李腾飞 ; 吴静
  • 英文作者:GUO Tianwei;LUO Richeng;YANG Yaqian;SHI Zhiqiang;LI Tengfei;WU Jing;College of Electrical and Information Engineering,Changsha University of Science & Technology;
  • 关键词:750kV/330kV ; 四回路 ; 模拟电荷法 ; 电磁环境 ; 无线电干扰 ; 可听噪声
  • 英文关键词:750kV/330kV;;quadruple-circuit;;charge simulation method;;electromagnetic environment;;radio interference;;audible noise
  • 中文刊名:GYDQ
  • 英文刊名:High Voltage Apparatus
  • 机构:长沙理工大学电气与信息工程学院;
  • 出版日期:2019-01-16
  • 出版单位:高压电器
  • 年:2019
  • 期:v.55;No.358
  • 基金:国家自然科学基金资助课题(50977003);; 电力与交通安全监控及节能技术教育部工程研究中心基金(2010#03)~~
  • 语种:中文;
  • 页:GYDQ201901025
  • 页数:8
  • CN:01
  • ISSN:61-1127/TM
  • 分类号:163-170
摘要
为了有效研究750kV/330kV混压同塔四回输电线路电磁环境,文中采用模拟电荷法计算同塔四回混压输电线路导线下的工频电场,采用毕奥—萨瓦定律计算磁场数值,并采用激发函数法进行了无线电干扰的计算,同时运用BPA公式进行了可听噪声的计算。针对同塔四回混压输电线路不同导线相序布置、不同分裂间距、不同杆塔呼称高进行了系统的研究。结果表明:A、B型塔采用A6和B6相序布置可以有效改善线路下方电磁环境;导线分裂间距对电场、磁感应强度影响较小;电场、磁感应强度、无线电干扰和可听噪声随着杆塔呼称高增加而降低,其中电场、磁感应强度和无线电干扰减幅较大,可听噪声减幅较小。依据相应的电磁环境控制指标,获得了满足电磁环境要求的杆塔呼称高度。
        In order to effectively analyze electromagnetic environment of the 750kV/330kV quadruple-circuit trans-mission line on the same tower,method used to electric field calculation is simulation charge method,and methodused to magnetic field calculation is Biot-SaUart Principle in this paper. And method used to radio interference andaudible noise calculation is excitation function method or BPA formula. The influence regularities with different thephase sequence arrangement,the bundle spacing and tower's height are analyzed. The results show that the A6 phase sequence arrangement of A-type tower and the B6 phase sequence arrangement of B-type tower can effectivelythe electromagnetic environment below transmission lines. Electric and magnetic field strength are little influencedby the bundle spacing of conductor. Electric and magnetic field strength and radio interference greatly reduced withthe increase of tower's nominal height,and audible noise is little reduced with the increase of tower's nominalheight. According to the corresponding electromagnetic environment control indexes,the tower's nominal height that meets the requirements of electromagnetic environment is acquired.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.LIU Zhenya.Ultra-high voltage grid[M].Beijing:China Economic Publishing House,2005.
    [2]李冰寒,孙自安.陕北750/330 k V主网架规划研究[J].陕西电力,2008,36(8):22-26.LI Binghan,SUN Zi’an.Study on northern Shaanxi 750/330 kV main power grid planing[J].Shaanxi Electric Power,2008,36(8):22-26.
    [3]乌小锋.750 kV/330 kV混压同塔四回路输电线路电流不平衡度计算与分析[J].电网与清洁能源,2015,31(1):52-59.WU Xiaofeng.Calculation and analysis of level of the unbalance current in the 750 k V/330 kV four-crcuit transmission line on one tower[J].Power System and Clean Energy,2015,31(1):52-59.
    [4]温灵长,孙菊海.750 kV/330 kV混压同塔四回输电线路耐雷性能研究[J].电网与清洁能源,2013,29(12):36-44.WEN Lingchang,SUN Juhai.Research on characteristics of lightning resistance of the 750 kV/330 kV quadruple-circuit transmission line on the same tower[J].Advances of Power System&Hydroelectric Engineering,2013,29(12):36-44.
    [5]王麦锋,吴亮,鞠浩.750 kV输电线路铁塔选型和规划[J].电网与清洁能源,2012,28(11):45-51.WANG Maifeng,WU Liang,JU Hao.Selection and planning of steel towers for the 750 kV transmission line[J].Advances of Power System&Hydroelectric Engineering,2012,28(11):45-51.
    [6]赵建文,阎纲,王晓康.330 k V同塔双回交流输电线路的电磁环境研究[J].西安科技大学学报,2015(4):486-491.ZHAO Jianwen,YAN Gang,WANG Xiaokang.Calculation of electromagnetic environment parameters in same tower double circuit AC transmission lines[J].Journal of Xi’an University of Science and Technology,2015(4):486-491.
    [7]环境保护部,国家质量监督检验检疫总局.电磁环境控制限值:GB 8702-2014[S].北京:中国环境科学出版社,2014.Ministry of Environmental Protection of the People’s Republic of China,General Administration of Quality Supervision,In Spection and Quarantine of the People’s Republic of China.Controlling limits for electromagnetic environment:GB 8702-2014[S].Beijing:China Environmental Science Press,2014.
    [8]陈楠,文习山,刘波,等.高压输电导线三维工频电磁场计算与测量[J].电网技术,2011,35(3):159-164.CHEN Nan,WEN Xishan,LIU Bo,et al.Calculation and measurement of three-dimensional power frequency electrical and magnetic field under transmission line[J].Power System Technology,2011,35(3):159-164.
    [9]吴高波,李健,陈媛,等.±800 kV与±500 kV同塔双回直流输电线路电磁环境研究[J].电网技术,2015,39(9):2532-2538.WU Gaobo,LI Jian,CHEN Yuan,et al.Research on electromagnetic environment of±800 kV and±500 kV doublecircuit DC transmission lines on the same tower[J].Power System Technology,2015,39(9):2532-2538.
    [10]EL DEIN A Z,WAHAB M A,HAMADA M M.The effects of the span configurations and conductor sag on the electricfield distribution under overhead transmission lines[J].IEEETransactions on Power Delivery,2010,25(4):2891-2902.
    [11]张晓,贾振宏,吴锁平,等.500/220 kV混压同塔四回线路电磁环境的仿真分析[J].电网技术,2010,34(5):207-211.ZHANG Xiao,JIA Zhenhong,WU Suoping,et al.Simulation analysis on electromagnetic environment of quadruplecircuit transmission lines belonging to different voltage classes on the same tower[J].Power System Technology,2010,34(5):207-211.
    [12]李俊杰,邹军,李本良,等.采用激发函数法计算分析不同相序排列下双回交流高压输电线路的无线电干扰[J].电网技术,2010,34(6):14-18.LI Junjie,ZOU Jun,LI Benliang,et al.Analysis on radio interference from double-circuit of high voltage AC powertransmission line under different arrangement of sequenceby excitation function method[J].Power System Technology,2010,34(6):14-18.
    [13]谭闻,张小武.输电线路可听噪声研究综述[J].高压电器,2009,45(3):109-112.TAN Wen,ZHANG Xiaowu.Research review on audible noise control of transmission line[J].High Voltage Apparatus,2009,45(3):109-112.
    [14]Working Group 36.01 CIGRE.Electric and magnetic fields produced by transmission systems[M].Paris:Paris Description of Phenomena Practical Guide for Calculation,1980.
    [15]邹岸新,徐禄文.相序对特高压交流输电线下工频电磁场影响的仿真分析研究[J].高压电器,2015,51(3):82-87.ZOU Anxin,XU Luwen.Simulation analysis on effect of phase sequence on power frequency electromagnetic field under UHV AC transmission lines[J].High Voltage Appara-164tus,2015,51(3):82-87.
    [16]朱军,吴广宁,石超群,等.交\直流共用超/特高压输电走廊下地面工频电场及最优相序排列方式分析[J].高电压技术,2014,40(9):2797-2805.ZHU Jun,WU Guangning,SHI Chaoqun,et al.Analysis on power frequency electric field at ground surface and optimal phase sequence arrangement of EHV/UHV transmission lines in common AC/DC transmission corridor[J].High Voltage Engineering,2014,40(9):2797-2805.
    [17]张斌,陈水明,庄池杰,等.同塔双回输电线路电气不平衡度的改善措施[J].电网技术,2014,38(12):3484-3489.ZHANG Bin,CHEN Shuiming,ZHUANG Chijie,et al.Improvement measures for electric unbalance of double-circuit transmission lines on same tower[J].Power System Technology,2014,38(12):3484-3489.
    [18]朱普轩,杨光,贺建国,等.超/特高压输电线路电磁环境限值标准探讨[J].电网技术,2010,34(5):201-206.ZHU Puxuan,YANG Guang,HE Jianguo,et al.Several suggestions for electromagnetic environment of EHV and UHVtransmission lines in China[J].Power System Technology,2010,34(5):201-206.
    [19]Standard for safety levels with respect to human exposure to electromagnetic fields,0~3 kHz:IEEE C95.6-2017[S].2017.
    [20]汲亚飞,邹军.同塔多回线路垂直排列最优相序布置方式[J].高电压技术,2008,34(1):172-175.JI Yafei,ZOU Jun.Optimized phase sequence arrangements for multiple-loop power lines with vertical arrangements[J].High Voltage Engineering,2008,34(1):172-175.
    [21]牛林.特高压交流输电线路电磁环境参数预测研究[D].济南:山东大学,2008.NIU Lin.Study on electromagnetic environment parameters prediction from ultra-high voltage AC transmission line[D].Jinan:Shandong University,2008.