不同土壤基质下水分胁迫对蒙古栎幼苗表型可塑性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of water stress on phenotypic plasticity of Quercus mongolica seedlings grown in two soil substrates
  • 作者:王君 ; 及利 ; 张忠辉 ; 王芳 ; 李焱龙 ; 陆志民 ; 杨雨春
  • 英文作者:WANG Jun;JI Li;ZHANG Zhong-hui;WANG Fang;LI Yan-long;LU Zhi-min;YANG Yu-chun;Forestry Academy of Jilin Province;Sanchazi Forestry Bureau of Jilin Province;
  • 关键词:水分胁迫 ; 腐殖土 ; 可塑性指数 ; 蒙古栎
  • 英文关键词:water stress;;humus;;plasticity index;;Quercus mongolica
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:吉林省林业科学研究院;吉林省三岔子林业局;
  • 出版日期:2019-01-15
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.306
  • 基金:吉林省林业科技项目(2013-002);; 国家重点研发计划项目(2017YFC0504001)资助
  • 语种:中文;
  • 页:STXZ201901011
  • 页数:9
  • CN:01
  • ISSN:21-1148/Q
  • 分类号:57-65
摘要
土壤水分是影响植物生长发育的重要因子之一,探究不同土壤基质条件下幼苗生长和生物量分配对干旱胁迫的响应可为培育优质造林苗木提供理论支撑。以2年生蒙古栎(Quercus mongolica)幼苗为对象,设置土壤基质和水分两个因素的随机区组试验,采用盆栽控水法,选取腐殖土和黏土作为基质,设置4个水分胁迫水平,即正常供水CK、轻度胁迫T1、中度胁迫T2和重度胁迫T3(分别为田间持水量的80%、60%、40%和20%),测定在20、40和60 d持续干旱条件下幼苗苗高、地径、冠面积、叶面积、比叶面积、各器官生物量分配等指标。结果表明:幼苗苗高和地径随着水分胁迫强度的加深而降低,且在土壤基质间存在显著差异;幼苗比叶面积在水分胁迫间存在显著差异,腐殖土的幼苗叶面积指数和叶片生物量则显著高于黏土;持续胁迫60 d后,随着胁迫程度的加深,腐殖土的幼苗总生物量和各器官生物量均呈下降趋势,而黏土T1处理下幼苗总生物量、根系生物量和叶生物量最大,分别为39.98、22.32和6.16 g·株-1。冗余分析结果表明:土壤全氮、全磷、速效磷、蒸发速率、渗透速率和通气孔隙度与幼苗形态呈显著正相关,而土壤容重、总孔隙度和吸水倍数与幼苗形态呈负相关;总体上,幼苗各器官干重的可塑性指数要高于各器官生物量比的可塑性指数;干旱条件下,丰富的养分和良好的土壤结构能够弥补和缓解水分亏缺造成的蒙古栎幼苗生长受到的抑制,在实际育苗生产中需合理配置土壤和进行水分管理,以提高苗木对环境的耐受性和造林表现。
        Soil moisture is one of the most important factors affecting plant growth. Investigating the responses of seedling growth and biomass allocation to drought stress on different soil substrates could provide theoretical support for the cultivation of high-quality afforestation seedlings.Here,2-year-old Quercus mongolica seedlings were chosen as research object and an experiment was conducted under completely random design and with two factors( water levels and substrates). There were four water levels [normal water supply( CK),mild water stress( T1),moderate water stress( T2),and severe water stress( T3),corresponding to 80%,60%,40%,and 20% of field water capacity respectively) in humus and clay. The height,ground diameter,crown area,leaf area,specific leaf area( SLA) and organ biomass of seedlings were measured in20,40,and 60 days. The results showed that the height and ground diameter of seedlings were decreased with increasing water stress intensity,and they had a significant difference between humus and clay. The SLA of seedlings significantly differed among water stresses. The leaf area index and leaf biomass were higher in humus than in clay. After 60 days of water stress,with increased stress intensity,the total biomass and organ biomass showed a descend trend in humus.The total,root and leaf biomass were 39.98,22.32,6.16 g per seedling and were the highest in T1 in clay. The results of redundancy analysis showed that soil total N,total P,available P,evaporation rate,permeation rate and aeration porosity had a significantly positive relation with seedling morphology,whereas soil bulk density,total porosity and water absorption capacity exhibited a negative relation with seedling morphology. The plasticity index of organs' dry weight was higher than organs' mass ratio on the whole. The soil substrates with an abundant nutrients and favorable soil structure could alleviate the negative effects of water deficiency on the growth of Q. mongolica seedlings. It's necessary to rationally dispose soil and manage water for seedlings and thus improve the tolerance of seedlings to environment and their performance in afforestation.
引文
陈大珂,周晓峰,祝宁.1994.天然次生林---结构·功能·动态与经营.哈尔滨:东北林业大学出版社.
    陈立新.2005.土壤实验实习教程.哈尔滨:东北林业大学出版社.
    程徐冰,吴军,韩士杰,等.2011.减少降水对长白山蒙古栎叶片生理生态特性的影响.生态学杂志,30(9):1908-1914.
    丁龙,赵慧敏,曾文静,等.2017.五种西北旱区植物对干旱胁迫的生理响应.应用生态学报,28(5):1455-1463.
    董蕾,李吉跃.2013.植物干旱胁迫下水分代谢、碳饥饿与死亡机理.生态学报,33(18):5477-5483.
    段瑞兵.2016.东北东部山区主要树种水分生理特性及耐旱性(硕士学位论文).哈尔滨:东北林业大学.
    段媛媛,宋丽娟,牛素旗,等.2017.不同林龄刺槐叶功能性状差异及其与土壤养分的关系.应用生态学报,28(1):28-36.
    冯晓燕,刘宁,郭晋平,等.2013.控制光照条件下华北山地4个混交树种幼苗幼树的形态响应和可塑性.林业科学,49(11):42-50.
    胡耀升,么旭阳,刘艳红.2015.长白山森林不同演替阶段比叶面积及其影响因子.生态学报,35(5):1480-1487.
    黄菊莹,袁志友,李凌浩.2009.羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化.植物生态学报,33(3):442-448.
    李芳兰,包维楷,吴宁.2009.白刺花幼苗对不同强度干旱胁迫的形态与生理响应.生态学报,29(10):5406-5416.
    李瑞姣,陈献志,岳春雷,等.2018.干旱胁迫对日本荚蒾幼苗光合生理特性的影响.生态学报,38(6):1-6.
    李伟,白娥,李善龙,等.2013.施氮和降水格局改变对土壤CH4和CO2通量的影响.生态学杂志,32(8):1947-1958.
    林波,刘庆.2008.四种亚高山针叶林树种的表型可塑性对不同光照强度的响应.生态学报,28(10):4665-4675.
    罗永忠,李广.2014.土壤水分胁迫对新疆大叶苜蓿的生长及生物量的影响.草业学报,23(4):213-219.
    庞世龙,欧芷阳,申文辉,等.2017.干旱胁迫对蚬木幼苗表型可塑性的影响.中南林业科技大学学报,37(5):21-25.
    王林,代永欣,郭晋平,等.2016.刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用.林业科学,52(6):1-9.
    王林龙,李清河,徐军,等.2015.干旱胁迫对不同种源油蒿幼苗的生长和形态可塑性的影响.东北林业大学学报,43(10):55-57.
    王晓冬,叶生欣,沈海龙,等.2008.不同土壤水分条件对真桦幼苗形态特征、生物量及光合生理特征的影响.东北林业大学学报,36(5):22-24.
    韦莉莉,张小全,侯振宏,等.2005.杉木苗木光合作用及其产物分配对水分胁迫的响应.植物生态学报,29(3):394-402.
    卫星,李贵雨,吕琳.2015.农林废弃物育苗基质的保水保肥效应.林业科学,51(12):26-34.
    武高林,陈敏,杜国祯.2008.营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响.应用生态学报,19(8):1708-1713.
    肖强,叶文景,朱珠,等.2005.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,24(6):711-714.
    许中旗,王义弘.2002.蒙古栎研究进展.河北林果研究,17(4):365-370.
    姚小兰,周琳,冯茂松,等.2018.干旱胁迫对不同基质网袋桢楠幼苗生长及生物量的影响.植物研究,38(1):81-90.
    尹丽.2011.麻疯树幼苗对干旱胁迫及施氮的生理生态响应(硕士学位论文).雅安:四川农业大学.
    Allen CD,Macalady AK,Chenchouni H,et al.2010.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management,259:660-684.
    Arora A,Singh VP,Mohan J.2001.Effect of Nitrogen and Water Stress on Photosynthesis and Nitrogen Content in Wheat.Biologia Plantarum,44:153-155.
    Borken W,Davidson EA,Savage K,et al.2006.Effect of summer throughfall exclusion,summer drought,and winter snow cover on methane fluxes in a temperate forest soil.Soil Biology&Biochemistry,38:1388-1395.
    Erica D,Danielc N,Fran9oiseyoko I,et al.2004.Effects of an experimental drought and recovery on soil emissions of carbon dioxide,methane,nitrous oxide,and nitric oxide in a moist tropical forest.Global Change Biology,10:718-730.
    Fenn ME,Baron JS,Allen EB,et al.2003.Ecological effects of nitrogen deposition in the western United States.Bioscience,53:404-420.
    Fernndez RJ,Wang M,Reynolds JF.2002.Do morphological changes mediate plant responses to water stress?A steadystate experiment with two C4 grasses.New Phytologist,155:79-88.
    Koyro HW.2006.Effect of salinity on growth,photosynthesis,water relations and solute composition of the potential cash crop halophyte Plantago coronopus(L.).Environmental and Experimental Botany,56:136-146.
    Kroon HD,Huber H,Stuefer JF,et al.2005.A modular concept of phenotypic plasticity in plants.New Phytologist,166:73-82.
    Lang AC,Hrdtle W,Bruelheide H,et al.2010.Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China.Forest Ecology and Management,260:1708-1715.
    Saneoka H,Moghaieb REA,Premachandra GS,et al.2004.Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds.Environmental and Experimental Botany,52:131-138.
    Shan LS,Zhang XM,Wang YK,et al.2008.Influence of moisture on the growth and biomass allocation in Haloxylon ammodendron and Tamarix ramosissima seedlings in the shelterbelt along the Tarim Desert Highway,Xinjiang,China.Chinese Science Bulletin,53:93-101.
    Solomon S,Qin D,Manning M,et al.2007.Contribution of Working Group I to the fourth assessment report of the intergovernmental panel onclimate change.UK and New York:Cambridge University Press.
    Teskey R,Wertin T,Bauweraerts I,et al.2015.Responses of tree species to heat waves and extreme heat events.Plant,Cell&Environment,38:1699-1712.
    Valladares F,Sanchez-Gomez D,Zavala MA.2006.Quantitative estimation of phenotypic plasticity:Bridging the gap between the evolutionary concept and its ecological applications.Journal of Ecology,94:1103-1116.
    Wang GG,Bauerle WL,Mudder BT.2006.Effects of light acclimation on the photosynthesis,growth,and biomass allocation in American chestnut(Castanea dentata)seedlings.Forest Ecology and Management,226:173-180.
    Yang N,Ji L,Salahuddin,et al.2018.The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China.European Journal of Soil Biology,85:73-78.