西藏地区荞麦与玉米混合青贮对发酵品质和微生物多样性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of variation in proportion of maize on the fermentation quality and microbial diversity of mixed buckwheat and maize silage in Tibet
  • 作者:商振达 ; 谭占坤 ; 李家奎 ; 卓嘎 ; 王宏辉 ; 巴桑 ; 谢国平 ; 刘锁珠
  • 英文作者:SHANG Zhen-da;TAN Zhan-kun;LI Jia-kui;ZHUO Ga;WANG Hong-hui;BA Sang;XIE Guo-ping;LIU Suo-zhu;College of Animal Science, Tibet Agricultural & Animal Husbandry University;Tibetan Plateau Feed Processing Research Center;College of Veterinary Medicine, Huazhong Agricultural University;
  • 关键词:全株荞麦 ; 全株玉米 ; 混合青贮 ; 发酵品质 ; 微生物多样性
  • 英文关键词:whole buckwheat;;whole maize;;mixed silage;;fermentation quality;;microbial diversity
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:西藏农牧学院动物科学学院;西藏高原饲料加工工程研究中心;华中农业大学动物医学院;
  • 出版日期:2019-04-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.165
  • 基金:国家自然科学基金项目(31760673);; 西藏高原饲料加工工程研究中心项目资助
  • 语种:中文;
  • 页:CYXB201904009
  • 页数:11
  • CN:04
  • ISSN:62-1105/S
  • 分类号:97-107
摘要
为探究西藏林芝市全株荞麦与全株玉米混合青贮对青贮饲料发酵品质和微生物多样性的影响,分别设定全株荞麦单独青贮组(A)、全株荞麦∶全株玉米=4∶1混合青贮组(B)、全株荞麦∶全株玉米=3∶2混合青贮组(C)、全株荞麦∶全株玉米=2∶3混合青贮组(D)和全株荞麦∶全株玉米=1∶4混合青贮组(E)共5个处理组。分别在青贮第7、14、30和60天时,开窖取样,测定青贮饲料的发酵品质和微生物菌群结构。结果表明,与全株荞麦单独青贮组相比,全株荞麦与全株玉米混合青贮组在一定程度上改变了青贮的发酵品质,混合青贮组降低了青贮饲料的pH值,提高了乳酸含量,且氨态氮/总氮的值和丁酸含量均符合优质青贮饲料的要求量。从微生物菌群结构来看,混合青贮改变了青贮饲料的菌群结构,相比与全株荞麦单独青贮组,混合青贮组提高了厚壁菌门和LAB菌种的丰度,有效地抑制了腐败菌的生长,且这种效果随着全株玉米混合比例越高而越显著。综合考虑全株荞麦利用最大化和发酵品质,建议将全株荞麦和全株玉米以2∶3混合青贮较为适宜。
        This study conducted in Nyingchi, Tibet, explored the effect on silage fermentation quality and microbial diversity of adding whole maize in in various proportions to whole buckwheat, when making silage. The combinations tested were:(A) whole buckwheat alone;(B) buckwheat∶maize mixed at a 4∶1 ratio;(C) buckwheat∶maize mixed at a 3∶2 ratio;(D) buckwheat∶maize mixed at a 2∶3 ratio;(E) buckwheat∶maize mixed at a 1∶4 ratio. On the 7 th, 14 th, 30 th and 60 th day after ensiling, samples were collected to determine the fermentation quality and microflora structure of silage. Compared with buckwheat alone(silage A) adding maize reduced the pH value and increased the lactic acid content of the silage. Both the ammonia nitrogen∶total nitrogen values and the butyric acid content of the mixed silages met the requirements to be considered high quality silage. Maize addition also changed the microflora structure of the silage. Compared with silage A, maize addition increased the abundance of Firmicutes and lactic acid bacterial strains, and effectively inhibited the growth of spoilage bacteria, and this effect was more significant as the proportion of maize increased in silages B to E. Considering the desirability of maximization utilization of buckwheat which is suited to the local climate, and silage fermentation quality, we conclude that silage D with a 2∶3 buckwheat∶maize ratio would be the preferred formulation.
引文
[1] Zhang J, Yuan X J, Guo G, et al. Effect of additive on fermentation quality of mixed silage of oat (Avena sativa) and common vetch (Vicia sativa) in Tibet. Acta Prataculturae Sinica, 2014, 23(5): 359-364.张洁, 原现军, 郭刚, 等. 添加剂对西藏燕麦和箭筈豌豆混合青贮发酵品质的影响. 草业学报, 2014, 23(5): 359-364.
    [2] Wang Q, Yu C Q, Li Z H, et al. Effect of additive coenzyme and lactic acid bacteria on fermentation quality of mixed silage of tall fescue (Festuca arundiacea) and common vetch (Vicia sativa) in Tibet. Acta Prataculturae Sinica, 2012, 21(4): 186-191. 王奇, 余成群, 李志华, 等. 添加酶和乳酸菌制剂对西藏苇状羊茅和箭筈豌豆混合青贮发酵品质的影响. 草业学报, 2012, 21(4): 186-191.
    [3] Weinberg Z G, Muck R E. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiological Review, 1996, 19(1): 53-68.
    [4] Roger J, Merry A, David R. Propionibacteria and their role in the biological control of aerobic spoilage in silage. International Symposium on Propionibacteria, 1999, 79(1): 149-164.
    [5] McDonald P, Henderson A, Heron S J E. The biochemistry of silage (2th ed). Marlow, UK: Chalcombe Publications, 1991.
    [6] Guo X S, Ding W R, Haan J G, et al. Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Animal Feed Science and Technology, 2008, 142: 89-98.
    [7] Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illum ina HiSeq and MiSeq platforms. The Isme Journal, 2012, 6(8): 1621-1624.
    [8] Jiang Y, Ogunade I M, Qi S, et al. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR. Journal of Dairy Science, 2017, 100(1): 325-342.
    [9] Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified gene encoding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
    [10] Li L H, Sun Y M, Yuan Z H, et al. Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of manyflower silvergrass. Bioresource Technology, 2015, 189: 334-340.
    [11] Zhou M L. Innovative utilization and development prospect of buckwheat in Tibet. Tibet Journal of Agricultural, 2018, 40(1): 7-10.周美亮. 西藏荞麦的创新利用和发展前景. 西藏农业科技, 2018, 40(1): 7-10.
    [12] Long Y, Ge W Q, Ci B, et al. High-yield cultivation techniques for green corn in Tibet. Tibet Science and Technology, 2007, (10): 10-11, 20.隆英, 革文清, 次巴, 等. 西藏青饲玉米高产栽培技术. 西藏科技, 2007, (10): 10-11, 20.
    [13] Deng R, Liang Y L, Zhang D H, et al. Effects of feed Poyigoum cymosum on pig slaughter performance and meat quality. Heilongjiang Animal Science and Veterinary Medicine, 2012, (3): 68-70.邓蓉, 梁应林, 张定红, 等. 饲用金荞麦对猪屠宰性能和肉质的影响. 黑龙江畜牧兽医, 2012, (3): 68-70.
    [14] Bal M A, Shaver R D, Jirovec A G, et al. Crop processing and chop length of corn silage: Effects on intake, digestion, and milk production by dairy cows. Journal of Dairy Science, 2000, 83(6): 1264-1273.
    [15] Li L X, Guo G, Yuan X J, et al. Effects of additives on the fermentation quality of mixed silage of forage maize and hullessbarley straw in Tibet. Acta Agrestia Sinica, 2015, 23(2): 401-406.李龙兴, 郭刚, 原现军, 等. 添加剂对西藏青饲玉米和青稞秸秆混合青贮发酵品质的影响. 草地学报, 2015, 23(2): 401-406.
    [16] Wang M S, Yang J, Wang Y Z, et al. The primary investigation on the acidity analysis of silage made with fodder ramie and whole-plant corn. Chinese Godder, 2018, (13): 78-82.王满生, 杨晶, 王延周, 等. 饲用苎麻与全株玉米混合青贮饲料的酸度分析. 中国饲料, 2018, (13): 78-82.
    [17] Liu Q, Cheng X, Sun Q Z, et al. Study on the mixing silage of corn and sorghum. Chinese Cow, 2016, (5): 1-4.柳茜, 程晓, 孙启忠, 等. 玉米与高粱混合青贮的研究. 中国奶牛, 2016, (5): 1-4.
    [18] Weather M W. Phenol-hypochlorite reaction for determinations of ammonia. Annual of Chemistry, 1967, 39: 971-974.
    [19] Owens V N, Albrecht K A, Muck R E, et al. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstrural carbohydrate. Crop Science, 1999, 39(6): 1873-1880.
    [20] Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society, 2005, 360: 1935-1943.
    [21] Simpson E H. Measurement of diversity. Nature, 1949, 163: 688.
    [22] Chao A. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11: 265-270.
    [23] Chao A, Yang M C K. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 1993, 80: 193-201.
    [24] Shao T, Shimojo M, Wang T, et al. Effect of additives on the fermentation quality and residual mono and disaccharides compositions of forage oats (Avena sativa L.) and italian ryegrass (Lolium multiflorum Lam.). Asian-Australasian Journal of Animal Science, 2005, 18: 1582-1588.
    [25] Shao T, Ohba N, Shimojo M, et al. Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum jacq.) silages. Asian-Australasian Journal of Animal Science, 2004, 17: 808-813.
    [26] Tjandraatmadja M, Norton B W, MacRae I C. Ensilage characteristics of three tropical grasses as influenced by stage of growth and addition of molasses. World Journal of Microbiology and Biotechnology, 1994, 10: 74-81.
    [27] Yuan X J, Yu C Q, Li Z H, et al. Effect of adding wet hulless barley distillers’ grains on fermentation quality of mixed ensilage of hulless barley straw and tall fescue in Tibet. Acta Prataculturae Sinica, 2012, 21(2): 92-98.原现军, 余成群, 李志华, 等. 添加青稞酒糟对西藏地区青稞秸秆和高羊茅混合青贮发酵品质的影响. 草业学报, 2012, 21(2): 92-98.
    [28] Shao T, Ohba N, Shimojo M, et al. Effects of addition of glucose and sorbic acid on the fermentation quality of guineagrass (Panicum maximum jacq.) silages. Journal of the Faculty of Agriculture, Kyushu University, 2003, 47(20): 351-358.
    [29] Ranjit N K, Taylor C C, Kung L, et al. Effect of Lactobacillus buchneri 40788 on the fermentation, aerobic stability and nutritive value of maize silage. Grass Forage Science, 2002, 57(2): 73-81.
    [30] Hu Z F, Chang J, Niu H X, et al. Microbial diversity of whole-plant maize during ensilage and after air exposure analyzed by metagenomics technology. Chinese Journal of Animal Nutrition, 2017, 29(10): 3750-3760.胡宗福, 常杰, 牛化欣, 等. 基于宏基因组学技术检测全株玉米青贮期间和暴露空气后的微生物多样性.动物营养学报, 2017, 29(10): 3750-3760.
    [31] Ray A K, Bairag I A, Sarkar G K, et al. Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 2007, 37(1): 47-53.
    [32] Tohno M, Lobayashi H, Nomura M, et al. Identification and characterization of lactic acid bacteria isolated from mixed pasture of timothy and orchardgrass, and its badly preserved silage. Journal of Animal Science, 2002, 83(4): 318-330.
    [33] Mcdonald P, Henderson A R, Heron S J E. The biochemistry of silage (2nd ed) . Marlow: Chalcombe Publications, 1991: 81-151.