CuO/ZrO_2催化水煤气变换反应制氢:ZrO_2载体焙烧温度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CuO/ZrO_2 catalysts for the production of H_2 through the water-gas shift reaction:Effect of calcination temperature of ZrO_2
  • 作者:张燕杰 ; 陈崇启 ; 詹瑛瑛 ; 叶远松 ; 娄本勇 ; 郑国才 ; 林棋
  • 英文作者:ZHANG Yan-jie;CHEN Chong-qi;ZHAN Ying-ying;YE Yuan-song;LOU Ben-yong;ZHENG Guo-cai;LIN Qi;Ocean College,Minjiang University;National Engineering Research Center of Chemical Fertilizer Catalyst,Fuzhou University;
  • 关键词:CuO/ZrO2催化剂 ; 水煤气变换反应 ; ZrO2焙烧温度 ; CO程序升温还原 ; 表面羟基
  • 英文关键词:CuO/ZrO2 catalyst;;water-gas shift reaction;;calcination temperature of ZrO2;;CO-TPR;;surface hydroxyl groups
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:闽江学院海洋学院;福州大学化肥催化剂国家工程研究中心;
  • 出版日期:2019-04-15
  • 出版单位:燃料化学学报
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(21503105);; 福建省自然科学基金(2017J05025,2017J01584);; 福建省高校杰出青年科研人才培育计划(2016);; 福建省教育厅JK类项目(JK2015038);; 闽江学院科研启动经费(MJY17003)资助~~
  • 语种:中文;
  • 页:RLHX201904010
  • 页数:10
  • CN:04
  • ISSN:14-1140/TQ
  • 分类号:91-100
摘要
以经不同温度(120、250、350、450℃)焙烧处理的ZrO_2为载体,采用沉积-沉淀法制备了系列CuO/ZrO_2催化剂;考察了富氢气氛下催化剂的水煤气变换反应(WGS)催化性能。结果表明,CuO/ZrO_2催化剂的催化活性随ZrO_2载体焙烧温度的升高呈现先升高后降低的"火山型"变化趋势,在焙烧温度为250℃时取得最高值。采用X射线粉末衍射、N_2物理吸附-脱附、N_2O滴定、H_2程序升温还原和CO程序升温还原及质谱跟踪等技术研究了系列ZrO_2载体及CuO/ZrO_2催化剂的结构和还原性能。结果表明,随着ZrO_2焙烧温度的升高,一方面,CuO/ZrO_2催化剂的Cu分散度逐渐降低,与ZrO_2具有强相互作用的高分散活性Cu-[O]-Zr物种("[]"表示ZrO_2表面氧空位)逐渐减少;另一方面,Cu-[O]-Zr物种的还原能力逐渐增强,并诱导催化剂活性表面羟基的还原能力也相应增强(CO为还原剂),即降低了催化剂对WGS反应的起活温度。两方面的综合作用使得ZrO_2载体焙烧温度为250℃(中等温度)时,CuO/ZrO_2催化剂的WGS催化活性最高。
        A series of CuO/ZrO_2 catalysts were prepared by a deposition-precipitation method using ZrO_2 calcined at various temperatures( 120,250,350 and 450 ℃) as supports. The water-gas shift( WGS) reaction was carried out on these catalysts using H_2 rich reactant gas( 15% CO,55% H2,23% N_2,7% CO_2). It was shown that the catalytic activity of the catalysts increased at first and then decreased with increasing calcination temperature of ZrO_2. The catalyst supported on ZrO_2 calcined at 250 ℃ showed the highest catalytic activity.The structure and reducibility of CuO/ZrO_2 catalysts were studied by various techniques,such as XRD,N_2-physisorption,N_2 O titration,H_2-TPR and CO-TPR-MS. The results showthat the Cu dispersion and the proportion of catalytically active Cu-[O]-Zr species( "[]"represents an oxygen vacancy on ZrO_2 support)decrease with the increase of ZrO_2 calcination temperature. The calcination of ZrO_2 at higher temperature leads to an improvement of the reducibility of Cu-[O]-Zr species and hydroxyl groups on the CuO/ZrO_2 catalysts,resulting in an easier onset of the surface WGS reaction between surface hydroxyl groups and CO reductant. The two factors reach a balance for the catalyst supported on ZrO_2 calcined at 250 ℃( moderate temperature),as is thought to be responsible for the highest WGS activity of this catalyst.
引文
[1]LEVALLEY T L,RICHARD A R,FAN M.The progress in water gas shift and steam reforming hydrogen production technologies-A review[J].Int J Hydrogen Energy,2014,39(30):16983-17000.
    [2]YAO S,ZHANG X,ZHOU W,GAO R,XU W,YE Y,LIN L,WEN X,LIU P,CHEN B,CRUMLIN E,GUO J,ZUO Z,LI W,XIEJ,LU L,KIELY C J,GU L,SHI C,RODRIGUEZ J A,M A D.Atomic-layered Au clusters onα-M oC as catalysts for the low-temperature w ater-gas shift reaction[J].Science,2017,357(6349):389-393.
    [3]STERE C E,ANDERSON J A,CHANSAI S,DELGADO J J,GOGUET A,GRAHAM W G,HARDACRE C,TAYLOR S F R,TU X,WANG Z Y,YANG H.Non-thermal plasma activation of gold-based catalysts for low-temperature w ater-gas shift catalysis[J].Angew Chem Int Ed,2017,56(20):5579-5583.
    [4]PAL D B,CHAND R,UPADHYAY S N,MISHRA P K.Performance of water gas shift reaction catalysts:A review[J].Renewable Sustainable Energy Rev,2018,93:549-565.
    [5]ABDEL-MAGEED A M,KUCEROVA G,BANSMANN J,BEHM R J.Active Au species during the low-temperature water gas shift reaction on Au/CeO2:A time-resolved operando XAS and DRIFTS study[J].ACS Catal,2017,7(10):6471-6484.
    [6]PALMA V,PISANO D,MARTINO M.Structured noble metal-based catalysts for the WGS process intensification[J].Int J Hydrogen Energy,2018,43(26):11745-11754.
    [7]AMMAL S C,HEYDEN A.Water-gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports[J].ACS Catal,2017,7(1):301-309.
    [8]GUAN H L,LIN J,QIAO B T,MIAO S,WANG A Q,WANG X D,ZHANG T.Enhanced performance of Rh1/TiO2catalyst w ithout methanation in w ater-gas shift reaction[J].AIChE J,2017,63(6):2081-2088.
    [9]MA Y J,LIU B,JING M M,ZHANG R Y,CHEN J Y,ZHANG Y H,LI J L.Promoted potassium salts based Ru/AC catalysts for water gas shift reaction[J].Chem Eng J,2016,287:155-161.
    [10]LIN J,WANG A Q,QIAO B T,LIU X Y,YANG X F,WANG X D,LIANG J X,LI J X,LIU J Y,ZHANG T.Remarkable performance of Ir1/Fe Oxsingle-atom catalyst in w ater gas shift reaction[J].J Am Chem Soc,2013,135(41):15314-15317.
    [11]XU M,YAO S,RAO D,NIU Y,LIU N,PENG M,ZHAI P,MAN Y,ZHENG L,WANG B,ZHANG B,MA D,WEI M.Insights into interfacial synergistic catalysis over Ni@TiO2-xcatalyst tow ard w ater-gas shift reaction[J].J Am Chem Soc,2018,140(36):11241-11251.
    [12]ZHANG Z,WANG S S,SONG R,CAO T,LUO L,CHEN X,GAO Y,LU J,LI W X,HUANG W.The most active Cu facet for lowtemperature w ater gas shift reaction[J].Nat Commun,2017,8:488.
    [13]YAN H,QIN X T,YIN Y,TENG Y F,JIN Z,JIA C J.Promoted Cu-Fe3O4catalysts for low-temperature w ater gas shift reaction:Optimization of Cu content[J].Appl Catal B:Environ,2018,226:182-193.
    [14]CHEN C,ZHAN Y,LI D,ZHANG Y,LIN X,JIANG L,ZHENG Q.Preparation of CuO/CeO2catalyst w ith enhanced catalytic performance for w ater-gas shift reaction in hydrogen production[J].Energy Technol,2018,6(6):1096-1103.
    [15]CHEN C,ZHAN Y,ZHOU J,LI D,ZHANG Y,LIN X,JIANG L,ZHENG Q.Cu/CeO2catalyst for w ater-gas shift reaction:Effect of CeO2pretreatment[J].ChemPhysChem,2018,19(12):1448-1455.
    [16]MA Y J,LIU B,OUYANG B,LI J L.Production of hydrogen from water-gas shift reaction over Ru-[BMIM]BF4/ZnO catalyst[J].Int JHydrogen Energy,2017,42(7):4146-4154.
    [17]LI J,TA N,SONG W,ZHAN E,SHEN W.Au/ZrO2catalysts for low-temperature w ater gas shift reaction:Influence of particle sizes[J].Gold Bull,2009,42(1):48-60.
    [18]CERN M L,HERRERA B,ARAYA P,GRACIA F,TORO-LABBA.Influence of the monoclinic and tetragonal zirconia phases on the w ater gas shift reaction.A theoretical study[J].J M ol M odel,2013,19(7):2885-2891.
    [19]KOUVA S,HONKALA K,LEFFERTS L,KANERVO J.Review:Monoclinic zirconia,its surface sites and their interaction with carbon monoxide[J].Catal Sci Technol,2015,5:3473-3490.
    [20]KAUPPIK E I,HONKALA K,KRAUSE A O I,KANERVO J M,LEFFERTS L.ZrO2acting as a redox catalyst[J].Top Catal,2016,59(8/9):823-832.
    [21]DOW W P,HUANG T J.Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst[J].J Catal,1994,147(1):322-332.
    [22]KO J B,BAE C M,JUNG Y S,KIM D H.Cu-ZrO2catalysts for w ater-gas-shift reaction at low temperatures[J].Catal Lett,2005,105(3/4):157-161.
    [23]CHEN C,RUAN C,ZHAN Y,LIN X,ZHENG Q,WEI K.The significant role of oxygen vacancy in Cu/ZrO2catalyst for enhancing w ater-gas-shift performance[J].Int J Hydrogen Energy,2014,39(1):317-324.
    [24]AGUILA G,VALENZUELA A,GUERRERO S,ARAY P.WGS activity of a novel Cu-ZrO2catalyst prepared by a reflux method.Comparison w ith a conventional impregnation method[J].Catal Commun,2013,39:82-85.
    [25]TANG Q L,LIU Z P.Identification of the active Cu phase in the water-gas shift reaction over Cu/ZrO2from first principles[J].J Phys Chem C,2010,114(18):8423-8430.
    [26]张燕杰,陈崇启,詹瑛瑛,林棋,娄本勇,郑国才,郑起.Y修饰CuO/ZrO2催化剂高效催化水煤气变换反应制氢[J].燃料化学学报,2017,45(9):1137-1145.(ZHANG Yan-jie,CHEN Chong-qi,ZHAN Ying-ying,LIN Qi,LOU Ben-yong,ZHENG Guo-cai,ZHENG Qi.Highly active Y-promoted CuO/ZrO2catalysts for the production of hydrogen through w ater-gas shift reaction[J].J Fuel Chem Technol,2017,45(9):1137-1145.)
    [27]SONG L,CAO X B,LI L.Engineering stable surface oxygen vacancies on ZrO2by hydrogen-etching technology:An efficient support of gold catalysts for w ater-gas shift reaction[J].ACS Appl M ater Interfaces,2018,10(37):31249-31259.
    [28]ZHANG Y,ZHAN Y,CHEN C,CAO Y,LIN X,ZHENG Q.Highly efficient Au/ZrO2catalysts for low-temperature w ater-gas shift reaction:Effect of pre-calcination temperature of ZrO2[J].Int J Hydrogen Energy,2012,37(17):12292-12300.
    [29]ZHANG Y,CHEN C,LIN X,LI D,CHEN X,ZHAN Y,ZHENG Q.CuO/ZrO2catalysts for w ater-gas shift reaction:Nature of catalytically active copper species[J].Int J Hydrogen Energy,2014,39(8):3746-3754.
    [30]ZOU Z Q,MENG M,GUO L H,ZHA Y Q.Synthesis and characterization of CuO/Ce1-xTixO2catalysts used for low-temperature COoxidation[J].J Hazard M ater,2009,163(2/3):835-842.
    [31]JACKSON S D,HARGREAVES J S J.Metal oxide catalysis(Vol.2)[M].Weinheim:Wiley-VCH Verlag GmbH&Co.KGaA,2009.
    [32]KWAK J H,HU J,MEI D,YI C,KIM D H,PEDEN C H F,ALLARD L F,SZANYI J.Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J].Science,2009,325(5948):1670-1673.
    [33]SING K S W,EVERETT D H,HAUL R A W,MOSCOU L,PIEROTTI R A,ROUQUROL J,SIEMIENIEWSKA T.Reporting physisorption date for gas/solid systems w ith special reference to the determination of surface area and porosity[J].Pure Appl Chem,1985,57(4):603-619.
    [34]WITOON T,CHALORNGTHAM J,DUMRONGBUNDITKUL P,CHAREONPANICH M,LIMTRAKUL J.CO2hydrogenation to methanol over Cu/ZrO2catalysts:Effects of zirconia phases[J].Chem Eng J,2016,293:327-336.
    [35]HEEMEIER M,FRANK M,LIBUDA J,WOLTER K,KUHLENBECK H,BAUMER M,FREUND H J.The influence of OH groups on the grow th of rhodium on alumina:A model study[J].Catal Lett,2000,68(1/2):19-24.
    [36]ZHANG X,SHI H,XU B.Vital roles of hydroxyl groups and gold oxidation states in Au/ZrO2catalysts for 1,3-butadiene hydrogenation[J].J Catal,2011,279(1):75-87.
    [37]ZHAI Y,PIERRE D,SI R,DENG W,FERRIN P,NILEKAR A U,PENG G,HERRON J A,BELL D C,SALTSBURG H,FLYTZANI-STEPHANOPOULOS M.Alkali-stabilized Pt-OHxspecies catalyze low-temperature w ater-gas shift reactions[J].Science,2010,329(5999):1633-1636.
    [38]SI R,RAITANO J,YI N,ZHANG L,CHAN S,FLYTZANI-STEPHANOPOULOS M.Structure sensitivity of the low-temperature watergas shift reaction on Cu-CeO2catalysts[J].Catal Today,2012,180(1):68-80.