立方纳米结构ZnGa_2O_4的制备及光催化性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Photocatalytic Activity of ZnGa_2O_4 Nanocubes
  • 作者:姜雁博 ; 矫淑杰 ; 高世勇 ; 王东博 ; 王金忠
  • 英文作者:JIANG Yan-bo;JIAO Shu-jie;GAO Shi-yong;WANG Dong-bo;WANG Jin-zhong;School of Materials Science and Engineering,Harbin Institute of Technology;
  • 关键词:α-GaOOH纳米柱 ; ZnGa_2O_4纳米立方块 ; 水热法 ; 光催化
  • 英文关键词:α-GaOOH nanorod;;ZnGa_2O_4 nanocubes;;hydrothermal method;;photocatalysis
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:哈尔滨工业大学材料科学与工程学院;
  • 出版日期:2019-05-13
  • 出版单位:发光学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(61574051,61774051)资助项目~~
  • 语种:中文;
  • 页:FGXB201905005
  • 页数:8
  • CN:05
  • ISSN:22-1116/O4
  • 分类号:49-56
摘要
首先采用水热法在FTO衬底上制备出α-GaOOH纳米柱阵列,再以α-GaOOH纳米柱/FTO结构作为前驱体进行水热反应,经溶解再结晶过程,α-GaOOH纳米柱可转变为边长约为500 nm的ZnGa_2O_4纳米立方块。在模拟太阳光源辐照下的一系列光催化实验结果表明:样品对亚甲基蓝具有较强的吸附作用和较高的光催化活性,对罗丹明B、刚果红的吸附能力和光催化作用都很弱,对甲基橙只有较弱的光催化作用;H_2O_2可以作为电子捕捉剂和供氧剂,促进样品的导带电子参与活性自由基的形成,使样品对染料表现出持续较高的光催化活性。
        α-GaOOH nanorod arrays on FTO substrates are synthesized by a simple hydrothermal method for the first time, which can be used as a precursor and converted via hydrothermal reaction into ZnGa_2O_4 nanocubes due to a dissolution-recrystallization process. The characterization results of samples indicate that as-prepared ZnGa_2O_4 on FTO belongs to cubic system and has the cubic morpohology with the size of about 500 nm. A series of photocatalytic experiments have been performed under simulated sunlight irradiation and the results indicate that ZnGa_2O_4 nanocubes show both enhanced adsorption and photocatalytic abilities for methylene blue compared with rhodamine B and congo red, and only show weak photocatalytic activity for methyl orange. As electron scavenger and oxygen provider, H_2O_2 can facilitate the formation of free radicals with high chemical reactivity and make as-prepared samples possess continuous and enhanced photocatalytic activity of dyes.
引文
[1] ZOLLINGER H.Color Chemistry:Syntheses,Properties and Applications of OrganicDyes and Pigments [M].New York:VCH Publishers,1987.
    [2] FORGACS E,CSERHáTI T,OROS G.Removal of synthetic dyes from wastewaters:a review [J].Environ.Int.,2004,30(7):953-971.
    [3] KONSTANTINOU I K,ALBANIS T A.TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:a review [J].Appl.Catal.B Environ.,2004,49(1):1-14.
    [4] HOFFMANN M R,MARTIN S T,CHOI W,et al..Environmental applications of semiconductor photocatalysis [J].Chem.Rev.,1995,95(1):69-96.
    [5] PERALTA-ZAMORA P,KUNZ A,DE MORAES S G,et al..Degradation of reactive dyes I.A comparative study of ozonation,enzymatic and photochemical processes [J].Chemosphere,1999,38(4):835-852.
    [6] ROBINSONT,MCMULLAN G,MARCHANT R,et al..Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative [J].Bioresour.Technol.,2001,77(3):247-255.
    [7] PéREZ M H,PE?UELA G,MALDONADO M I,et al..Degradation of pesticides in water using solar advanced oxidation processes [J].Appl.Catal.B Environ.,2006,64(3-4):272-281.
    [8] LINSEBIGLER A L,LU G Q,YATES J T.Photocatalysis on TiO2 surfaces:principles,mechanisms,and selected results [J].Chem.Rev.,1995,95(3):735-758.
    [9] LACHHEB H,PUZENAT E,HOUAS A,et al..Photocatalytic degradation of various types of dyes (alizarin s,croceinorange g,methyl red,congored,methylene blue) in water by UV-irradiated titania [J].Appl.Catal.B Environ.,2002,39(1):75-90.
    [10] HABIBI M H,VOSOOGHIAN H.Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension [J].J.Photochem.Photobiol.A Chem.,2005,174(1):45-52.
    [11] TAYADE R J,SUROLIA P K,KULKARNI R G,et al..Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2 [J].Sci.Technol.Adv.Mater.,2007,8(6):455-462.
    [12] RAUF M A,ASHRAF S S.Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution [J].Chem.Eng.J.,2009,151(1-3):10-18.
    [13] INOUE Y.Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0 -and d10-related electronic configurations [J].Energy Environ.Sci.,2009,2(4):364-386.
    [14] IKARASHI K,SATO J,KOBAYASHI H,et al..Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10configuration [J].J.Phys.Chem.B,2002,106(35):9048-9053.
    [15] DIXIT H,TANDON N,COTTENIER S,et al..Electronic structure and band gap of zinc spinel oxides beyond LDA:ZnAl2O4,ZnGa2O4 and ZnIn2O4 [J].New J.Phys.,2011,13:063002-1-11.
    [16] SUN Z Y,TALR EJA N,TAO H C,et al..Catalysis of carbon dioxide photoreduction on nanosheets:fundamentals and challenges [J].Angew.Chem.Int.Ed.,2018,57(26):7610-7627.
    [17] ZENG C M,HUT,HOU N J,et al..Photocatalytic pure water splitting activities for ZnGa2O4 synthesized by various methods [J].Mater.Res.Bull.,2015,61:481-485.
    [18] ZHANG L,LIANG Q M,DAI C H,et al..Preparation and characterization of noble metal (Pt,Ag,Ru) loaded ZnGa2O4 and its photocatalytic and photoelectric performance [J].J.Mater.Sci.:Mater.Electron.,2017,28(23):17917-17924.
    [19] ZHENG T T,XIA Y G,JIAO X L,et al..Enhanced photocatalytic activities of single-crystalline ZnGa2O4nanoprisms by the coexposed {111} and {110} facets [J].Nanoscale,2017,9(9):3206-3211.
    [20] YAN S C,WANG J J,GAO H L,et al..An ion-exchange phase transformation to ZnGa2O4nanocube towards efficient solar fuel synthesis [J].Adv.Funct.Mater.,2013,23(6):758-763.
    [21] LIU J,LU W,WU H Z,et al..In situ synthesis of rice-like ZnGa2O4for the photocatalytic removal of organic and inorganic pollutants [J].Mater.Sci.Semicond.Process.,2016,56:251-259.
    [22] 李春潮,张学英,吴钢,等.n(Zn)∶n(Ga)比值对合成ZnGa2O4结构及光致发光性能的影响 [J].发光学报,2006,27(6):963-966.LI C C,ZHANG X Y,WU G,et al..Influence of the Ratio of n(Zn)∶n(Ga) on the structure and the photoluminescence properties of ZnGa2O4 [J].Chin.J.Lumin.,2006,27(6):963-966.(in Chinese)
    [23] GU Z J,LIU F,LI X F,et al..Red,green,and blue luminescence from ZnGa2O4 nanowire arrays [J].J.Phys.Chem.Lett.,2010,1(1):354-357.
    [24] LUCHECHKO A,KRAVETS O.Novel visible phosphors based on MgGa2O4-ZnGa2O4 solid solutions with spinel structure co-doped with Mn2+ and Eu3+ions [J].J.Lumin.,2017,192:11-16.
    [25] LI L,WANG Y H,LI H,et al..Suppression of photocatalysis and long-lasting luminescence in ZnGa2O4 by Cr3+ doping [J].RSC Adv.,2015,5(70):57193-57200.
    [26] HUO Q Y,TU W X,GUO L.Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots [J].Opt.Mater.,2017,72:305-312.
    [27] HAN N,CHEN D R,PANG Y P,et al..Structural regulation of ZnGa2O4nanocubes for achieving high capacity and stable rate capability as an anode material of lithium ion batteries [J].Electrochim.Acta,2017,235:295-303.
    [28] YU C Y,YAN D,LOU S Q,et al..Highly stabile ZnGa2O4∶Eu nanocrystals as a fluorescence probe for bio-imaging [J].J.Lumin.,2018,99:492-498.
    [29] LIANG H F,MENG F,LAMB B K,et al..Solution growth of screw dislocation driven α-GaOOH nanorod arrays and their conversion to porous ZnGa2O4nanotubes [J].Chem.Mater.,2017,29(17):7278-7287.