含锆玉米苞叶生物炭吸附喹诺酮类药物研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Quinolones Adsorption on the Corn Bract Biochar Containing Zr
  • 作者:张依含 ; 史静 ; 许正文 ; 宋端梅 ; 崔依昕
  • 英文作者:ZHANG Yihan;SHI Jing;XU Zhengwen;SONG Duanmei;CUI Yixin;School of Engineering, China Pharmaceutical University;School of Environment, Nanjing University of Information Science & Technology;
  • 关键词: ; 生物炭 ; 喹诺酮类药物 ; 吸附
  • 英文关键词:Zr;;biochar;;quinolones;;adsorption
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:中国药科大学工学院;南京信息工程大学环境科学与工程学院;
  • 出版日期:2019-07-10
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.330
  • 基金:国家自然科学基金项目(51408612);; 江苏省自然科学基金(BK20140660);; 江苏省青蓝工程;; 中国药科大学药学基地科研训练及科研能力提高项目(J1310032)
  • 语种:中文;
  • 页:SCLJ201907008
  • 页数:5
  • CN:07
  • ISSN:33-1127/P
  • 分类号:42-46
摘要
以玉米苞叶为原材料,通过负载金属锆得到含Zr生物炭,用于处理水体中4种喹诺酮类药物,吡哌酸、盐酸二氟沙星、盐酸洛美沙星和奥比沙星。通过p H影响实验,优化吸附过程中的pH;通过等温吸附实验、动力学实验来考察各种喹诺酮类药物的吸附特性;通过FT IR分析,探讨主要的吸附机理。结果表明,当初始pH=3时,Zr生物炭对4种喹诺酮类药物具有优异的吸附能力,最大吸附量约为250~300 mg/g,远超文献报道的生物炭对喹诺酮类物质的吸附量。准2级动力学模型和Langmuir方程可以拟合其吸附过程,其过程可能是化学吸附。吸附机理可能包括静电作用、络合作用、π-π共轭作用和氢键作用。
        Zr-biochar was obtained by loading zirconium on corn bract, and it was used to remove four quinolones in the water, including pipemidic acid,difloxacin hydrochloride, lomefloxacin hydrochloride and orbifloxacin. The initial pH for adsorption was optimized. The four quinolones adsorption characteristics were tested by the isothermal and kinetic experiments. The main adsorption mechanism was investigated by FTIR analysis. The results showed that when the initial p H was 3, the Zr-biochar showed outstanding adsorption capacities for four quinolones, and maximum adsorption capacities were about 250~300 mg/g, which exceeded the literature report. The pseudo-second-order model and Langmuir isotherm model described well for the experimental data, the process could be chemisorption. The adsorption mechanism included electrostatic interaction, complexation, π-π conjugation and hydrogen bonding.
引文
[1]PENG H,PAN B,WU M,et al.Adsorption of ofloxacin and norfloxacin on carbon nanotubes:hydrophobicity-and structure-controlled process[J].Journal of Hazardous Materials,2012,233:89-96.
    [2]PEI Z,SHAN X Q,KONG J,et al.Coadsorption of ciprofloxacin and Cu(II)onmontmorillonite and kaolinite as affected by solution pH[J].Environmental Science&Technology,2009,44(3):915-920.
    [3]YI S,GAO B,SUN Y,et al.Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars[J].Chemosphere,2016,150:694-701.
    [4]HESAS R H,WAN DWMA,SAHUJN.The effects of a microwave heating method on the production of activated carbon from agricultural waste:a review[J].Anal Appl Pyrol,2013,100:1-11.
    [5]WANG Z,XING M C,FANG W K,et al.One-step synthesis of magnetite core/zirconia shell nanocompositefor high efficiency removal of phosphate from water[J].Applied Surface Science,2016,366:67-77.
    [6]XIONG W P,TONG J,YANG Z H,et al.Adsorption of phosphate from aqueous solution using iron-zirconiummodified activated carbon nanofiber:Performance and mechanism[J].Journal of Colloid and Interface Science,2017,493:17-23.
    [7]SU Y,CUI H,LI Q,et al.Strong adsorption of phosphate byamorphous zirconium oxide nanoparticles[J].Water Res,2013,47:5018-5026.
    [8]PAUDYAL H,PANGENI B,INOUE K,et al.Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV)loaded dried orange juice residue[J].Chem Eng J,2013,146:713-720.
    [9]JIMENEZ-LOZANO E,MARQUES I,BARRON D,et al.Determination of pKa values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector[J].Analytica Chemica Acta,2002,464(1):37-45.
    [10]HAO F,XUEBING L,JUN W,et al.Activated carbon adsorption of quinolone antibiotics in water:Performance,mechanism,and modeling[J].Journal of Environmental Sciences,2017,56:145-152.
    [11]TEMERKYM,KAMAL M M,IBRAHIM M,et al.Voltammetric studies for analytical determination of antibacterial danofloxacin and orbifloxacin[J].Eurasian Journal of Analytical Chemistry,2009(1):53-65.
    [12]QIN X,LIU F,ZHAO L,et al.Adsorption of levofloxacin to goethite:batch and column studies[J].Environmental Engineering Science,2016,33(4):235-241.
    [13]GOYNE K W,CHOROVER J,KUBICKI J D,et al.Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica[J].Journal of Colloid and Interface Science,2005,283(1):160-170.
    [14]TRIVEDI P,VASUDEVAN D.Spectroscopic investigation of Ciprofloxacin speciation at the goethite-water interface[J].Environ Sci Technol,2007,41:3153-3158.
    [15]ZHAO Y J,LI W H,LIU J M.Modification of garlic peel by nitric acid and its application as a novel adsorbent for solid-phase extraction of quinolone antibiotics[J].Chem Eng,2017,326:745-755.
    [16]WANG X Y,NGUYEN A V.Characterisation of electrokinetic properties ofclinoptilolite before and after activation by sulphuric acid for treating CSG water[J].Microporous and Mesoporous Materials,2016,220:175-182.
    [17]HO Y S,MCKAY G.Pseudo-second order model for sorption processes[J].Process Biochemistry,1999,34(5):451-465.
    [18]DONG S,SUN Y,WU J,et al.Graphene oxideas filter media to remove levofloxacin and lead from aqueous solution[J].Chemosphere,2016,150:759-764.
    [19]LIU P,LIU WJ,JIANG H,et al.Modification of bio-char derived from fast pyrolysis of biomass and its applicationin removal of tetracycline from aqueous solution[J].Bioresource Technology,2012,121:235-240.
    [20]PENG L,REN Y Q,GU J D,et al.Iron improving bio-char derived from microalgae on removalof tetracycline from aqueous system[J].Environ Sci Pollut Res,2014,21:7631-7640.
    [21]PAUDYAL H,PANGENI B,INOUE K,et al.Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV)loaded dried orange juice residue[J].Bioresource Technology,2013,146:713-720.
    [22]NAKAMOTO K,NAKAMOTO K.Infrared and Raman spectra of inorganic and coordination compounds[M].Wiley:John Wiley&Sons Inc,1977.
    [23]TACKETT J E.FT-IR characterization of metal acetates in aqueous solution[J].Applied Spectroscopy,1989,43(3):483-489.
    [24]CHENG G U,KARTHIKEYAN K G.Sorption of the antimicrobial Ciprofloxacin to aluminum and ironHydrous oxides[J].Environ Sci Technol,2005,39:9166-9173.
    [25]YI S Z,SUN Y Y,HU X,et al.Porous nano-cerium oxide wood chip biochar compositesfor aqueous levofloxacin removal and sorptionmechanism insights[J].Environ Sci Pollut Res,2017,25(26):25629-25637.
    [26]PENG B,CHEN L,QUE C,et al.Adsorption of antibiotics on graphene and biochar in aqueous solutions induced byπ-πinteractions[J].Scientific Reports,2016(6):319-320.
    [29]KAH M,SIGMUND G,XIAOF,et al.Sorption of ionizable and ionic organic compounds to biochar,activated carbon and other carbonaceous materials[J].Water Research,2017,124:673-692.
    [27]QURESHI T,MEMON N,MEMON S Q,et al.Decontamination of of loxacin:optimization of removal process onto sawdust using response surface methodology[J].Desalination and Water Treatment,2016,57(1):221-229.
    [28]FRESTA M,PUGLISI G,GIAMMONA G,et al.Pefloxacine mesilateand ofloxacin-loaded polyethylcyanoacrylate nanoparticles:Characterization of the colloidal drug carrier formulation[J].Journal of Pharmaceutical Sciences,1995,84(7):895-902.
    [30]PEI Z,SHAN X Q,KONG J,et al.Coadsorption of ciprofloxacin and Cu(II)on montmorillonite and kaolinite as affected by solution pH[J].Environmental Science&Technology,2009,44(3):915-920.