3'-磷酸腺苷-5'-磷酸硫酸的高效合成及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Production and application of 3'-phosphoadenosine-5'-phosphosulfate
  • 作者:周正雄 ; 堵国成 ; 康振
  • 英文作者:Zhengxiong Zhou;Guocheng Du;Zhen Kang;Key Laboratory of Industrial Biotechnology,Ministry of Education, Jiangnan University;School of Biotechnology, Jiangnan University;
  • 关键词:3'-磷酸腺苷-5'-磷酸硫酸 ; 硫酸基供体 ; 硫酸化反应 ; 芥子油苷 ; 肝素 ; 硫酸软骨素 ; 羟胺硝喹 ; 生物合成
  • 英文关键词:3'-phosphoadenosine-5'-phosphosulfate;;sulfate group donor;;sulfation;;glucosinolate;;heparin;;chondroitin sulfate;;oxamniquine;;biosynthesis
  • 中文刊名:SHWU
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:江南大学工业生物技术教育部重点实验室;江南大学生物工程学院;
  • 出版日期:2019-03-13 13:33
  • 出版单位:生物工程学报
  • 年:2019
  • 期:v.35;No.247
  • 基金:国家自然科学基金(No.31670092);; 江南大学自主科研计划重点项目基金(No.1012050205181370)资助~~
  • 语种:中文;
  • 页:SHWU201907009
  • 页数:12
  • CN:07
  • ISSN:11-1998/Q
  • 分类号:80-91
摘要
硫酸化化合物广泛存在于胞浆、细胞表面及胞外基质中,在机体细胞发育、分化、免疫、解毒和信号传递等生命活动过程中起着不可替代的作用。3'-磷酸腺苷-5'-磷酸硫酸(3'-phosphoadenosine-5'-phosphosulfate,PAPS)是化合物硫酸化过程中最常用的硫酸基供体,但目前合成PAPS并最终实现其工业化应用还困难重重。文中主要综述过去10年内关于PAPS的生物合成及应用的研究进展,以期为PAPS的合成及其在芥子油苷、肝素、硫酸软骨素及羟胺硝喹等的生物合成中的应用提供参考。
        Sulfated compounds are widely present in cytoplasm,on cell surface,and in extracellular matrix.These compounds play important roles in cell development,differentiation,immune response,detoxication,and cell signal transduction.3'-Phosphoadenosine-5'-phosphosulfate(PAPS)is the universal sulfate group donor for the biosynthesis of sulfated compounds.Up to now,the synthesis of PAPS is still too expensive for industrial applications.This review focuses on the recent progress of PAPS production and summaries the application of PAPS,particularly in the production of glucosinolate,heparin,condroitin sulfate,and oxamniquine production.
引文
[1]Markovich D,Murer H.The SLC13 gene family of sodium sulphate/carboxylate cotransporters.Pflügers Arch,2004,447(5):594-602.
    [2]Bissig M,Hagenbuch B,Stieger B,et al.Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes.J Biol Chem,1994,269(4):3017-3021.
    [3]Turina P,Petersen J,Gr?ber P.Thermodynamics of proton transport coupled ATP synthesis.Biochim Biophys Acta,2016,1857(6):653-664.
    [4]Vanasco V,Magnani ND,Cimolai MC,et al.Endotoxemia impairs heart mitochondrial function by decreasing electron transfer,ATP synthesis and ATPcontent without affecting membrane potential.JBioenerg Biomembr,2012,44(2):243-252.
    [5]Tarasov AI,Griffiths EJ,Rutter GA.Regulation of ATP production by mitochondrial Ca2+.Cell Calcium,2012,52(1):28-35.
    [6]Rangaraju V,Calloway N,Ryan TA.Activity-driven local ATP synthesis is required for synaptic function.Cell,2014,156(4):825-835.
    [7]Ullrich TC,Blaesse M,Huber R.Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae,a key enzyme in sulfate activation.EMBO J,2001,20(3):316-329.
    [8]Mueller JW,Shafqat N.Adenosine-5′-phosphosulfate-a multifaceted modulator of bifunctional3′-phospho-adenosine-5′-phosphosulfate synthases and related enzymes.FEBS J,2013,280(13):3050-3057.
    [9]Mougous JD,Lee DH,Hubbard SC,et al.Molecular basis for G protein control of the prokaryotic ATPsulfurylase.Mol Cell,2006,21(1):109-122.
    [10]Taguchi Y,Sugishima M,Fukuyama K.Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8.Biochemistry,2004,43(14):4111-4118.
    [11]MacRae IJ,Segel IH,Fisher AJ.Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum.Nat Struct Biol,2002,9(12):945-949.
    [12]Beynon JD,MacRae IJ,Huston SL,et al.Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila.Biochemistry,2001,40(48):14509-14517.
    [13]Herrmann J,Ravilious GE,McKinney SE,et al.Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation.JBiol Chem,2014,289(15):10919-10929.
    [14]Lalor DJ,Schnyder T,Saridakis V,et al.Structural and functional analysis of a truncated form of Saccharomyces cerevisiae ATP sulfurylase:C-terminal domain essential for oligomer formation but not for activity.Protein Eng,2003,16(12):1071-1079.
    [15]MacRae IJ,Segel IH,Fisher AJ.Crystal structure of ATP sulfurylase from Penicillium chrysogenum:insights into the allosteric regulation of sulfate assimilation.Biochemistry,2001,40(23):6795-6804.
    [16]Ullrich TC,Huber R.The complex structures of ATPsulfurylase with thiosulfate,ADP and chlorate reveal new insights in inhibitory effects and the catalytic cycle.J Mol Biol,2001,313(5):1117-1125.
    [17]Jaramillo ML,Abanto M,Quispe RL,et al.Cloning,expression and bioinformatics analysis of ATPsulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli.Bioinformation,2012,8(15):695-704.
    [18]Wang XB,Zhang ZY,Ma XY,et al.Real-time fluorescence assays of alkaline phosphatase and ATPsulfurylase activities based on a novel PPi fluorescent probe.Talanta,2015,137:156-160.
    [19]Mugford SG,Matthewman CA,Hill L,et al.Adenosine-5′-phosphosulfate kinase is essential for Arabidopsis viability.Febs Lett,2010,584(1):119-123.
    [20]Schiffmann S,Schwenn JD.APS-sulfotransferase activity is identical to higher plant APS-kinase(EC2.7.1.25).Febs Lett,1994,355(3):229-232.
    [21]Ravilious GE,Herrmann J,Lee SG,et al.Kinetic mechanism of the dimeric ATP sulfurylase from plants.Biosci Rep,2013,33(4):e00053.
    [22]Herrmann J,Nathin D,Lee SG,et al.Recapitulating the structural evolution of redox regulation in adenosine 5?-phosphosulfate kinase from cyanobacteria to plants.J Biol Chem,2015,290(41):24705-24714.
    [23]Ravilious GE,Westfall CS,Jez JM.Redox-linked gating of nucleotide binding by the N-terminal domain of adenosine 5?-phosphosulfate kinase.J Biol Chem,2013,288(9):6107-6115.
    [24]Ravilious GE,Nguyen A,Francois JA,et al.Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase.Proc Natl Acad Sci USA,2012,109(1):309-314.
    [25]Schriek U,Schwenn JD.Properties of the purified APS-kinase from Escherichia coli and Saccharomyces cerevisiae.Arch Microbiol,1986,145(1):32-38.
    [26]An CY,Zhao L,Wei ZJ,et al.Chemoenzymatic synthesis of 3′-phosphoadenosine-5′-phosphosulfate coupling with an ATP regeneration system.Appl Microbiol Biotechnol,2017,101(20):7535-7544.
    [27]Logan HM,Cathala N,Grignon C,et al.Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family:expression studies in yeast and in relation to plant sulfur nutrition.J Biol Chem,1996,271(21):12227-12233.
    [28]Luo J,Wu WJ,Zou BJ,et al.Expression and purification of ATP sulfurylase from Saccharomyces cerevisias in Escherichia coli and its application in pyrosequencing//Zhou GH,Song QX,Eds.Advances and Clinical Practice in Pyrosequencing.New York:Springer,2016:187-195.
    [29]Cumming M,Leung S,McCallum J,et al.Complex formation between recombinant ATP sulfurylase and APS reductase of Allium cepa(L.).Febs Lett,2007,581(22):4139-4147.
    [30]Zhu L,Deng WW,Ye AH,et al.Cloning of two cDNAs encoding a family of ATP sulfurylase from Camellia sinensis related to selenium or sulfur metabolism and functional expression in Escherichia coli.Plant Physiol Bioch,2008,46(8/9):731-738.
    [31]Bao FF,Yan HH,Sun HJ,et al.Hydrolysis of by-product adenosine diphosphate from3′-phosphoadenosine-5′-phosphosulfate preparation using Nudix hydrolase NudJ.Appl Microbiol Biotechnol,2015,99(24):10771-10778.
    [32]Zhou XX,Chandarajoti K,Pham TQ,et al.Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of3′-phosphoadenosine-5′-phosphosulfate.Glycobiology,2011,21(6):771-780.
    [33]Leyh TS,Taylor JC,Markham GD.The sulfate activation locus of Escherichia coli K12:cloning,genetic,and enzymatic characterization.J Biol Chem,1988,263(5):2409-2416.
    [34]Gopal GJ,Kumar A.Strategies for the production of recombinant protein in Escherichia coli.Protein J,2013,32(6):419-425.
    [35]Bessette PH,?slund F,Beckwith J,et al.Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm.Proc Natl Acad Sci USA,1999,96(24):13703-13708.
    [36]Inaba K.Disulfide bond formation system in Escherichia coli.J Biochem,2009,146(5):591-597.
    [37]Ito K,Inaba K.The disulfide bond formation(Dsb)system.Curr Opin Struct Biol,2008,18(4):450-458.
    [38]Salinas G,Pellizza L,Margenat M,et al.Tuned Escherichia coli as a host for the expression of disulfide-rich proteins.Biotechnol J,2011,6(6):686-699.
    [39]Marques SM,Daniel L,Buryska T,et al.Enzyme tunnels and gates as relevant targets in drug design.Med Res Rev,2017,37(5):1095-1139.
    [40]Maloj?i?G,Owen RL,Grimshaw JPA,et al.Astructural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli.Proc Natl Acad Sci USA,2008,105(49):19217-19222.
    [41]Berger I,Guttman C,Amar D,et al.The molecular basis for the broad substrate specificity of human sulfotransferase 1A1.PLoS ONE,2011,6(11):e26794.
    [42]Gamage NU,Tsvetanov S,Duggleby RG,et al.The structure of human SULT1A1 crystallized with estradiol.An insight into active site plasticity and substrate inhibition with multi-ring substrates.J Biol Chem,2005,280(50):41482-41486.
    [43]Lu JH,Li HT,Zhang JP,et al.Crystal structures of SULT1A2 and SULT1A1*3:Insights into the substrate inhibition and the role of Tyr149 in SULT1A2.Biochem Biophys Res Commun,2010,396(2):429-434.
    [44]Brix LA,Barnett AC,Duggleby RG,et al.Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3:?site-directed mutagenesis and kinetic studies.Biochemistry,1999,38(32):10474-10479.
    [45]Zhou ZX,Li Q,Huang H,et al.Amicrobial-enzymatic strategy for producing chondroitin sulfate glycosaminoglycans.Biotechnol Bioeng,2018,115(6):1561-1570.
    [46]Grimshaw JPA,Stirnimann CU,Brozzo MS,et al.DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli.J Mol Biol,2008,380(4):667-680.
    [47]Grubb CD,Abel S.Glucosinolate metabolism and its control.Trends Plant Sci,2006,11(2):89-100.
    [48]Wang JS,Gu HH,Yu HF,et al.Network of regulation and metabolism of indole glucosinolate in plants.Acta Agric Zhejiangensis,2012,24(4):739-747(in Chinese).王建升,顾宏辉,虞慧芳,等.植物吲哚族芥子油苷的代谢调控网络.浙江农业学报,2012,24(4):739-747.
    [49]Aziz M,Nadipalli RK,Xie XT,et al.Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling.Front Plant Sci,2016,7:458.
    [50]Yatusevich R,Mugford SG,Matthewman C,et al.Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.Plant J,2010,62(1):1-11.
    [51]Kang Z,Zhou ZX,Wang Y,et al.Bio-based strategies for producing glycosaminoglycans and their oligosaccharides.Trends Biotechnol,2018,36(8):806-818.
    [52]Szajek AY,Chess E,Johansen K,et al.The USregulatory and pharmacopeia response to the global heparin contamination crisis.Nat Biotechnol,2016,34(6):625-630.
    [53]Zhang X,Pagadala V,Jester HM,et al.Chemoenzymatic synthesis of heparan sulfate and heparin oligosaccharides and NMR analysis:paving the way to a diverse library for glycobiologists.Chem Sci,2017,8(12):7932-7940.
    [54]Liu J,Linhardt RJ.Chemoenzymatic synthesis of heparan sulfate and heparin.Nat Prod Rep,2014,31(12):1676-1685.
    [55]Li XY.Study on efficient preparation of several key enzymes and its mutienzymatic reaction engineering for heparin biosynthesis[D].Zhejiang:Zhejiang University,2016(in Chinese).李晓燕.生物酶法合成肝素的多种关键酶制备和酶反应工程研究[D].浙江:浙江大学,2016.
    [56]Mikami T,Kitagawa H.Biosynthesis and function of chondroitin sulfate.Biochim Biophys Acta,2013,1830(10):4719-4733.
    [57]Habicher J,Haitina T,Eriksson I,et al.Chondroitin/dermatan sulfate modification enzymes in zebrafish development.PLoS ONE,2015,10(3):e0121957.
    [58]Pomin VH.Keratan sulfate:an up-to-date review.Int J Biol Macromol,2015,72:282-289.
    [59]Kuberan B,Lech MZ,Beeler DL,et al.Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide.Nat Biotechnol,2003,21(11):1343-1346.
    [60]Colley DG,Bustinduy AL,Secor WE,et al.Human schistosomiasis.Lancet,2014,383(9936):2253-2264.
    [61]Carson JP,Ramm GA,Robinson MW,et al.Schistosome-induced fibrotic disease:the role of hepatic stellate cells.Trends Parasitol,2018,34(6):524-540.
    [62]Anderson TJC,LoVerde PT,Le Clec’h W,et al.Genetic crosses and linkage mapping in schistosome parasites.Trends Parasitol,2018,34(11):982-996.
    [63]Valentim CL,Cioli D,Chevalier FD,et al.Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites.Science,2013,342(6164):1385-1389.
    [64]Taylor AB,Roberts KM,Cao XH,et al.Structural and enzymatic insights into species-specific resistance to schistosome parasite drug therapy.JBiol Chem,2017,292(27):11154-11164.
    [65]Chu LL,Dhakal D,Shin HJ,et al.Metabolic engineering of Escherichia coli for enhanced production of naringenin 7-sulfate and its biological activities.Front Microbiol,2018,9:1671.
    [66]Rivoal J,Hanson AD.Choline-O-sulfate biosynthesis in plants(identification and partial characterization of a salinity inducible choline sulfotransferase from species of limonium(plumbaginaceae).Plant Physiol,1994,106(3):1187-1193.
    [67]Hirschmann F,Krause F,Papenbrock J.The multi-protein family of sulfotransferases in plants:composition,occurrence,substrate specificity,and functions.Front Plant Sci,2014,5:556.
    [68]Guo Y,Hu BF,Huang H,et al.Estrogen sulfotransferase is an oxidative stress responsive gene that gender-specifically affects liver ischemia/reperfusion injury.J Biol Chem,2015,290(23):14754-14764.
    [69]Mungenast F,Aust S,Vergote I,et al.Clinical significance of the estrogen-modifying enzymes steroid sulfatase and estrogen sulfotransferase in epithelial ovarian cancer.Oncol Lett,2017,13(6):4047-4054.
    [70]Mueller JW,Idkowiak J,Gesteira TF,et al.Human DHEA sulfation requires direct interaction between PAPS synthase 2 and DHEA sulfotransferase SULT2A1.J Biol Chem,2018,293(25):9724-9735.
    [71]Foster PA,Mueller JW.Sulfation pathways:insights into steroid sulfation and desulfation pathways.J Mol Endocrinol,2018,61(2):T271-T283.
    [72]Teramoto T,Fujikawa Y,Kawaguchi Y,et al.Crystal structure of human tyrosylprotein sulfotransferase-2reveals the mechanism of protein tyrosine sulfation reaction.Nat Commun,2013,4:1572.
    [73]Hartmann-Fatu C,Bayer P.Determinants of tyrosylprotein sulfation coding and substrate specificity of tyrosylprotein sulfotransferases in metazoans.Chem-biol Interact,2016,259:17-22.