酿酒酵母氧化胁迫应答反应机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in response mechanism of Saccharomyces cerevisiae to oxidative stress
  • 作者:刘欢 ; 杨宇纯 ; 刘超 ; 刘士平 ; 薛艳红
  • 英文作者:LIU Huan;YANG Yuchun;LIU Chao;LIU Shiping;XUE Yanhong;College of Biology and Pharmaceutical Sciences,China Three Gorges University;
  • 关键词:酿酒酵母 ; 氧化胁迫 ; 防御 ; 应答反应
  • 英文关键词:Saccharomyces cerevisiae;;oxidative stress;;defense;;response
  • 中文刊名:AJSH
  • 英文刊名:Biotic Resources
  • 机构:三峡大学生物与制药学院;
  • 出版日期:2019-07-30 09:15
  • 出版单位:生物资源
  • 年:2019
  • 期:v.41;No.168
  • 基金:国家自然科学基金应急管理项目(31540065)
  • 语种:中文;
  • 页:AJSH201904003
  • 页数:7
  • CN:04
  • ISSN:42-1886/Q
  • 分类号:21-27
摘要
氧化胁迫是生物体面对逆境时的重要反应。在与逆境和活性氧做斗争的过程中,细胞进化出一套完整的应答调控机制,通过调节体内活性氧的代谢平衡,来保护DNA、脂质和蛋白质等免受氧化攻击。本文以酿酒酵母为例,根据近年来国内外研究的进展,围绕其在氧化胁迫应答过程中的三道保护屏障,即抗氧化物质和防御酶系统、转录调节和氧化物降解以及细胞器自噬,综述了其抗氧化代谢机理,为深入认识细胞的抗氧化应答机制奠定基础。
        Oxidative stress is an important response of organisms to adversity. In fighting against adversity and reactive oxygen,cells have evolved a complete set of response regulation mechanism to protect DNA,lipid and protein from oxidative attack by regulating the metabolic balance of reactive oxygen in vivo. Here,based on the research progress in response to oxidative stress at home and abroad in recent years,we review the mechanisms of antioxidant metabolism in the model of Saccharomyces cerevisiae,and summarize the three protective barriers:antioxidant substances and defensive enzymes,transcriptional regulation,together with oxidant degradation and organelle autophagy,which lays a foundation for further understanding the antioxidant response mechanism of cells.
引文
[1]Zhou C Z.Structural basis for yeast pathway in re-sponse to oxidative stress[J].J Univ Sci Technol Chi-na,2008,38(8):923-929.周丛照.酿酒酵母氧化应激系统的结构生物学基础[J].中国科学技术大学学报,2008,38(8):923-929.
    [2]Schieber M,Chandel N S.Tor signaling couples oxy-gen sensing to lifespan in C.elegans[J].Cell Rep,2014,9(1):9-15.
    [3]Mourard D,Antonelli P,Blazit A,et al.VEGA:a visi-ble spectrograph and polarimeter for the VLTI[M]//Richichi A,Delplancke F,Paresce F,et al.The Pow-er of Optical/IR Interferometry:Recent Scientific Re-sults and 2nd Generation Instrumentation.Berlin,Hei-delberg:Springer Berlin Heidelberg,2008.
    [4]Connolly J P,Ballard I M,Barnham K W J,et al.Effi-ciency limits of quantum well solar cells[C]//Proc.19th European Photovoltaic Solar Energy Conference,Paris,2004.
    [5]Yin Y H,An W T,Dong L,et al.Changes of antioxidant enzyme activities in different algebraic of Saccharomyces cerevisiae[J].Food Sci Technol,2013,38(8):38-41,47.尹亚辉,安文涛,董亮,等.不同世代酿酒酵母胞内抗氧化酶活性变化[J].食品科技,2013,38(8):38-41,47.
    [6]Eleutherio E,Brasil A D A,Fran?a M B,et al.Oxida-tive stress and aging:learning from yeast lessons[J].Fungal Biol,2018,122(6):514-525.
    [7]Liu X Y,Zhang X H,Bao X M.Study on the stress re-sistance of Saccharomyces cerevisiae industrial strains[J].China Brew,2006,25(1):8-11.刘向勇,张小华,鲍晓明.酿酒酵母工业菌株胁迫条件耐受性分析[J].中国酿造,2006,25(1):8-11.
    [8]Gan L Q,Jiang L H.H.Cellular responds under oxida-tive stress in Saccharomyces cerevisiae[J].Chem Life,2010,30(1):46-49.干立权,蒋伶活.氧化胁迫环境下的酵母细胞应答调控[J].生命的化学,2010,30(1):46-49.
    [9]Hiltunen J K,Mursula A M,Rottensteiner H,et al.The biochemistry of peroxisomalβ-oxidation in the yeast Saccharomyces cerevisiae[J].FEMS Microbiol Rev,2003,27(1):35-64.
    [10]Parrou J L,Teste M A,Fran?ois J.Effects of various types of stress on the metabolism of reserve carbohy-drates in Saccharomyces cerevisiae:genetic evidence for a stress-induced recycling of glycogen and trehalose[J].Microbiology,1997,143(6):1891-1900.
    [11]Rehman A,Sohail A M,Hasnain S.Cadmium biosorp-tion by yeast,Candida tropicalis CBL-1,isolated from industrial wastewater[J].J Gen Appl Microbiol,2010,56(5):359.
    [12]Li P P.The effect of vacuum packaging and antioxi-dants on frozen tilapia fillets quality[D].Zhanjiang:Guangdong Ocean University,2015.李鹏鹏.真空包装及抗氧化剂对冻藏罗非鱼片品质的影响[D].湛江:广东海洋大学,2015.
    [13]Zheng X F.Enzymatic synthesis and determination of glutathione[D].Nanchang:Nanchang University,2015.郑希帆.谷胱甘肽的合成及其检测技术研究[D].南昌:南昌大学,2015.
    [14]Li X.Measurement of reduced glutathione/oxidized glu-tathione enzymatic synthesis by high performance liquid chromatography[J].Guangdong Chem Ind,2014,41(5):158-159,171.李鑫.HPLC法检测酶法合成中还原型/氧化型谷胱甘肽[J].广东化工,2014,41(5):158-159,171.
    [15]Xie J Q,Li Y H,Yang C M,et al.Pharmacological ef-fects of superoxide dismutase[J].Chinese Journal of Biochemical Medicine,2009,30(1):72-75.谢继青,李玉华,杨春梅,等.超氧化物歧化酶的药理作用[J].中国生化药物杂志,2009,30(1):72-75.
    [16]Fang C H,Qiao K,Liu Z Y,et al.The research prog-ress of antioxidant enzymes in marine organisms[J].JFish Res,2016,38(4):331-342.方春华,乔琨,刘智禹,等.海洋生物中抗氧化酶的研究进展[J].渔业研究,2016,38(4):331-342.
    [17]Liu Y F,Wang W W,Zu Y X,et al.Research prog-ress on the effects of catalase on plant stress tolerance[J].Barley Cereal Sci,2019(1):5-8.刘云芬,王薇薇,祖艳侠,等.过氧化氢酶在植物抗逆中的研究进展[J].大麦与谷类科学,2019(1):5-8.
    [18]Mark D F,Chase J W,Richardson C C.Genetic map-ping of trxA,a gene affecting thioredoxin in Escherichia coli K12[J].Molec Gen Genet,1977,155(2):145-152.
    [19]Qin H J.New characteristics of thioredoxin and thiore-doxin reductase in vivo and in vitro[D].Beijing:Uni-versity of Chinese Academy of Sciences,2015.秦慧君.硫氧还蛋白及硫氧还蛋白还原酶体内外新特征的研究[D].北京:中国科学院大学,2015.
    [20]Zhou Z.Decreased methionine sulfoxide reductase A ex-pression renders melanocytes more sensitive to oxidative stress:a possible cause for melanocytes loss in vitiligo[D].Xi'an:The Fourth Military Medical University,2009.周舟.甲硫氨酸硫氧化物还原酶A对氧化应激状态下黑素细胞活性的影响[D].西安:第四军医大学,2009.
    [21]Wang L X,Tang L M,Gong Y Q,et al.Modulation of apurinic/apyrimidinic endonuclease on oxidative stress reaction of pulmonary microvascular endothelial cells induced by lipopolysaccharides[J].Chin J Crit Care Med Electron Ed,2014,7(6):20-24.王林霞,汤鲁明,龚裕强,等.脱嘌呤/脱嘧啶核酸内切酶1在脂多糖介导肺微血管内皮细胞氧化反应中的调控作用[J].中华危重症医学杂志(电子版),2014,7(6):20-24.
    [22]Ma S.GSH-px and GST in milk and its heat stability[J].China Dairy Cattle,2006(12):38-40.马森.牛乳中GSH-Px、GST及其热稳定性研究[J].中国奶牛,2006(12):38-40.
    [23]Wang Y N,Mei Y Z,Zheng L X,et al.Structural analysis of glutathione synthase from high-yield glutathi-one-producing Saccharomyces cerevisiae Y518[J].Food Sci,2009,30(17):258-261.王雅楠,梅艳珍,郑丽雪,等.高产GSH酵母突变株Y518谷胱甘肽合成酶结构分析[J].食品科学,2009,30(17):258-261.
    [24]Chi C B.Structural and biochemical insights into the multiple functions of yeast Grx3[D].Hefei:University of Science and Technology of China,2018.池昌标.酿酒酵母谷氧还蛋白Grx3的结构和功能研究[D].合肥:中国科学技术大学,2018.
    [25]Larochelle M,Drouin S,Robert F,et al.Oxidative stress-activated zinc cluster protein Stb5 has dual activa-tor/repressor functions required for pentose phosphate pathway regulation and NADPH production[J].Mol Cell Biol,2006,26(17):6690-6701.
    [26]Brown A J P,Cowen L E,di Pietro A.Stress adapta-tion[J].Microbiol Spectr,2017,5(4):10.1128
    [27]Wang Q,Wang Y,Dai X F,et al.Research progress on oxidative stress transcript factor AP-1 in fungi[J].J Food Saf Qual,2015,6(9):3517-3523.王琦,王龑,戴小枫,等.真菌中氧胁迫调控因子AP-1研究进展[J].食品安全质量检测学报,2015,6(9):3517-3523.
    [28]Sudol M.YAP1 oncogene and its eight isoforms[J].Oncogene,2013,32(33):3922-3922.
    [29]Delaunay A,Isnard A,Toledano M B.H2O2sensing through oxidation of the Yap1 transcription factor[J].EMBO J,2000,19(19):5157-5166.
    [30]Delaunay A,Pflieger D,Barrault M B,et al.A thiol peroxidase is an H2O2receptor and redox-transducer in gene activation[J].Cell,2002,111(4):471-481.
    [31]Wood M J,Andrade E C,Storz G.The redox domain of the Yap1p transcription factor contains two disulfide bonds[J].Biochemistry,2003,42(41):11982-11991.
    [32]Kuge S,Arita M,Murayama A,et al.Regulation of the yeast Yap1p nuclear export signal is mediated by re-dox signal-induced reversible disulfide bond formation[J].Mol Cell Biol,2001,21(18):6139-6150.
    [33]Okazaki S,Tachibana T,Naganuma A,et al.Multi-step disulfide bond formation in Yap1 is required for sensing and transduction of H2O2stress signal[J].Mol Cell,2007,27(4):675-688.
    [34]He X J,Fassler J S.Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress re-sponse of Saccharomyces cerevisiae[J].Mol Microbiol,2005,58(5):1454-1467.
    [35]EscotéX,Miranda M,Menoyo S,et al.Resveratrol induces antioxidant defence via transcription factor Yap1p[J].Yeast,2012,29(7):251-263.
    [36]Duan D Z.Thioredoxin reductase as a cellular target for the anticancer activity of natural compounds[D].Lan-zhou:Lanzhou University,2014.段东柱.以硫氧还蛋白还原酶为靶点的天然化合物抗肿瘤机制研究[D].兰州:兰州大学,2014.
    [37]Veal E A,Ross S J,Malakasi P,et al.Ybp1 is re-quired for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor[J].J Biol Chem,2003,278(33):30896-30904.
    [38]Bersweiler A,D'Autréaux B,Mazon H,et al.A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2signaling[J].Nat Chem Biol,2017,13(8):909-915.
    [39]Li Z S,Szczypka M,Lu Y P,et al.The yeast cadmi-um factor protein(YCF1)is a vacuolar glutathione S-con-jugate pump[J].J Biol Chem,1996,271(11):6509-6517.
    [40]Chen D R,Wilkinson C R M,Watt S,et al.Multiple pathways differentially regulate global oxidative stress re
    [41]Mulford K E,Fassler J S.Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response[J].Eukaryot Cell,2011,10(6):761-769.
    [42]Molina L,Kahmann R.An Ustilago maydis gene in-volved in H2O2detoxification is required for virulence[J].Plant Cell,2007,19(7):2293-2309.
    [43]Takatsume Y,Ohdate T,Maeta K,et al.Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in re-sponse to Ca2+in Saccharomyces cerevisiae[J].Bio-chem J,2010,427(2):275-287.
    [44]Hasan R,Leroy C,Isnard A,et al.The control of the yeast H2O2response by the Msn2/4 transcription factors[J].Mol Microbiol,2002,45(1):233-241.
    [45]Bayliak M M,Burdyliuk N I,Izers′Ka L I,et al.Con-centration-dependent effects of Rhodiola rosea on long-term survival and stress resistance of yeast Saccharomyces cerevisiae:the involvement of Yap1 and MSN2/4regulatory proteins[J].Dose-Response,2014,12(1):93.
    [46]Jacquet M,Renault G,Lallet S,et al.Oscillatory nu-cleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae[J].J Cell Biol,2003,161(3):497-505.
    [47]Wilkinson M G,Samuels M,Takeda T,et al.The Atf1 transcription factor is a target for the Sty1 stress-ac-tivated MAP kinase pathway in fission yeast[J].Genes Dev,1996,10(18):2289-2301.
    [48]Enjalbert B,Smith D A,Cornell M J,et al.Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans[J].MBoC,2006,17(2):1018-1032.
    [49]Zhu Z W,Yao L.Research progress in investigating the molecular mechanism of copper homeostasis[J].Chin Bull Life Sci,2012,24(8):847-857.朱志兀,姚琳.铜离子稳态平衡分子机理研究进展[J].生命科学,2012,24(8):847-857.
    [50]Xie M.NR2B mediated effects of dysfunction of ubiqui-tin-proteasome system components on CREB activity[D].Wuhan:Central China Normal University,2014.谢敏.NR2B介导的泛素-蛋白酶体系统成分的功能障碍对CREB活性的影响[D].武汉:华中师范大学,2014.
    [51]Kang Y,Vossler R A,Diaz-Martinez L A,et al.UBL/UBA ubiquitin receptor proteins bind a common tetraubiquitin chain[J].J Mol Biol,2006,356(4):1027-1035.
    [52]Yuan Y,Pan S S.Latest advances in the research on the influence of reactive oxygen species-mediated oxida-tive stress on myocardial mitochondria and autophagy in cardiovascular stress and exercise[J].China Sport Sci,2015,35(5):71-77,97.原阳,潘珊珊.活性氧介导氧化应激在心血管应激及运动中对心肌线粒体和自噬作用的新进展[J].体育科学,2015,35(5):71-77,97.
    [53]Wei Y P.Systematic study of ATG genes in the regula-tion of yeast autophagy[D].Wuhan:Huazhong Univer-sity of Science and Technology,2016.卫亚平.ATG基因调控酵母自噬的系统研究[D].武汉:华中科技大学,2016.
    [54]Xiao Y N,Jiang X,Lu P Y,et al.Studies on selective autophagy[J].J Brain Nerv Dis,2015,23(4):316-319.肖伊宁,蒋欣,吕佩源,等.选择性自噬的研究[J].脑与神经疾病杂志,2015,23(4):316-319.
    [55]Murphy M P.How mitochondria produce reactive oxy-gen species[J].Biochem J,2009,417(1),1-13.
    [56]Balszuweit F,Menacher G,Schmidt A,et al.Protec-tive effects of the thiol compounds GSH and NACagainst sulfur mustard toxicity in a human keratinocyte cell line[J].Toxicol Lett,2016,244:35-43.
    [57]Brown A J,Haynes K,Quinn J.Nitrosative and oxida-tive stress responses in fungal pathogenicity[J].Curr Opin Microbiol,2009,12(4):384-391.
    [58]Flattery-O'brien J A,Dawes I W.Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 ar-rest independent of RAD9 function[J].J Biol Chem,1998,273(15):8564-8571.
    [59]Laun P,Pichova A,Madeo F,et al.Aged mother cells of Saccharomyces cerevisiae show markers of oxida-tive stress and apoptosis[J].Mol Microbiol,2004,39(5):1166-1173.