广州市地表水体中合成麝香分布及去除研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and Removal Effect of Synthetic Musks in the Surface Water of Guangzhou City
  • 作者:刘祖发 ; 张泳华 ; 陈记臣 ; 查悉妮 ; 卓文珊 ; 刘茹
  • 英文作者:LIU Zufa;ZHANG Yonghua;CHEN Jichen;ZHA Xini;ZHUO Wenshan;LIU Ru;Center for Water Resource and Environment, Sun Yat-sen University;Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes;Pearl River Institute of Hydraulic Research;Instrumental Analysis & Research Center, Sun Yat-sen University;
  • 关键词:合成麝香 ; 空间分布 ; 水处理工艺
  • 英文关键词:synthetic musks;;space distribution;;water treatment process
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:中山大学水资源与环境研究中心;华南地区水循环与水安全广东省普通高校重点实验室;珠江水利委员会珠江水利科学研究院;中山大学测试中心;
  • 出版日期:2018-12-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家自然科学基金项目(41301627)
  • 语种:中文;
  • 页:TRYJ201812015
  • 页数:10
  • CN:12
  • ISSN:44-1661/X
  • 分类号:116-125
摘要
以广州市的河涌、湖泊、航道以及入海口4类地表水体为研究对象,对其中的佳乐麝香(HHCB)、吐纳麝香(AHTN)和酮麝香(MK)3种合成麝香的浓度与空间分布特征进行研究,分析常规水处理工艺对合成麝香的去除效果,并分别采用活性炭(PAC)吸附法和Fenton试剂降解法对2种主要合成麝香(HHCB和AHTN)的去除效果进行进一步分析。结果表明,(1)广州市湖泊、河涌、航道以及入海口4类地表水体溶解相中3种合成麝香的浓度比颗粒相高;无论是溶解相还是颗粒相,HHCB的浓度均远高于AHTN和MK;河涌中3种合成麝香的平均浓度均高于其他水体,其次是航道和湖泊,而入海口中3种合成麝香平均浓度最低。与国内外河流相比,广州地表水的合成麝香浓度偏高,可能与广州临近入海口,人口密集,城市水体污染严重有关。(2)水厂A和B对HHCB、AHTN和MK的去除率分别约为70%、80%和100%,其中混凝工艺对合成麝香的去除起着重要的作用。(3)对于200 ng·L~(-1)的HHCB和AHTN溶液,PAC的投入量分别为40 mg·L~(-1)和240 mg·L~(-1)时,HHCB和AHTN的去除率基本达到最优值,分别为85.50%和70.31%;对于80 mg·L~(-1)的PAC投加量,当HHCB和AHTN在初始质量浓度分别为150ng·L~(-1)和200ng·L~(-1)时,去除率分别稳定在80%和75%左右;PAC对HHCB和AHTN的去除效果最佳的pH值范围为2~6。当Fe~(2+)/H2O2摩尔比为1/2时,HHCB和AHTN的去除率达到最高值,分别为89.65%和87.43%;当pH值在2~4范围内时,Fenton试剂对HHCB和AHTN的去除效果最好,去除率均能达到90%左右;在反应时间为10 min时,Fenton试剂对HHCB和AHTN的去除率便达到89.65%和83.07%的稳定去除率。
        The concentrations and space distribution characteristics of three synthetic musks in rivers, lakes, channels and estuaries of Guangzhou city were studied. The three synthetic musks were galaxolide(HHCB), tonalide(AHTN) and musk ketone(MK). In addition, the removal effect of synthetic musks in conventional water treatment process were analyzed. And the powdered activated carbon(PAC) and Fenton reagent were used respectively to the removal experiments on HHCB and AHTN as well. The results showed that the three synthetic musks' concentrations of dissolved phase were higher than particle phase. And the concentration of HHCB was much higher than AHTN and MK. The average concentrations of three synthetic musks in rivers were higher than other three water bodies, followed by channels and lakes, while the concentrations of them in the estuaries were the lowest among these four types water bodies. Compared with domestic and foreign rivers, the synthetic musk concentration of surface water in Guangzhou was relatively high, which might be related to Guangzhou's proximity to the estuary, dense population, and serious urban water pollution. In water plant A and B, the removal rates of HHCB, AHTN and MK both were about 70%, 80% and 100%, respectively, and coagulation played an important role in the removal of them. For the initial concentrations of HHCB and AHTN of 200 ng·L~(-1), the removal rates of them basically reached the optimal values of 85.50% and 70.31% when the PAC dosages were 40 mg·L~(-1) and 240 mg·L~(-1), respectively. For the PAC dosage of 80 mg·L~(-1), the removal rates were stable at 80% and 75% respectively when the initial concentrations of HHCB and AHTN were 150 ng·L~(-1) and 200 ng·L~(-1) respectively. When the pH value of the reaction system was 2-6, PAC could reach the greatest removal effect of HHCB and AHTN. When the molar ratio of Fe~(2+)/H_2 O_2 was 1/2, the removal rates of HHCB and AHTN reached the highest, which were 89.65% and 87.43%, respectively. When the p H value of the reaction system was 2-4, Fenton reagent could reach the greatest removal effect of HHCB and AHTN, and removal rates both could reach about 90%. When the reaction time was 10 min, the removal rates of the Fenton reagent to HHCB and AHTN were 89.65% and 83.07%, respectively.
引文
ENSENBACH U,NAGEL R,1997.Toxicity of binary chemical mixtures:effects on reproduction of zebrafish(Brachydanio rerio)[J].Archives of Environmental Contamination&Toxicology,32(2):204-210.
    HU Z J,SHI Y L,CAI Y Q,2011.Reprint of:Concentrations,distribution,and bioaccumulation of synthetic musks in the Haihe River of China[J].Chemosphere,85(2):262-267.
    MERSCH-SUNDERMANN V,SCHNEIDER H,FREYWALD C,et al.,2001.Musk ketone enhances benzo(a)pyrene induced mutagenicity in human derived Hep G2 cells[J].Mutation Research/genetic Toxicology&Environmental Mutagenesis,495(1-2):89-96.
    MOLDOVAN Z,2006.Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania[J].Chemosphere,64(11):1808-1817.
    PECK A M,HORNBUCKLE K C,2004.Synthetic Musk Fragrances in Lake Michigan[J].Environmental Science&Technology,38(2):367-372.
    QUEDNOW K,PUTTMANN W,2008.Organophosphates and synthetic musk fragrances in freshwater streams in Hessen/Germany[J].CLEAN-Soil,Air,Water,36(1):70-77.
    REINER J L,KANNAN K,2006.A survey of polycyclic musks in selected household commodities from the United States[J].Chemosphere,62(6):867-873.
    REINER J L,KANNAN K,2011.Polycyclic musks in water,sediment and fishes from the Upper Hudson River,New York,USA[J].Water Air and Soil Pollution,214(1-4):335-342.
    RIMKUS G,RIMKUS B,WOLF M,et al.,1994.Nitro musks in human adipose tissue and breast milk[J].Chemosphere,28(2):421-432.
    STEVENS J L,NORTHCOTT G L,STERN G A,et al.,2003.PAHs,PCBs,PCNs,organochlorine pesticides,synthetic musks,and polychlorinated n-alkanes in U.K.sewage sludge:survey results and implications[J].Environmental Science&Technology,37(3):462-467.
    WAN Y,WEI Q W,HU J Y,et al.,2007.Levels,tissue distribution,and age-related accumulation of synthetic musk fragrances in Chinese sturgeon(Acipenser sinensis):comparison to organochlorines[J].Environmental Science&Technology,41(2):424-430.
    ZHANG X L,YAO Y,ZENG X Y,et al.,2008.Synthetic musks in the aquatic environment and personal care products in Shanghai,China[J].Chemosphere,72(10):1553-1558.
    陈宝福,曹云峰,孟书丹,2004.浅析影响活性炭吸附效果的因素[J].黑龙江医学,17(3):193-194.
    陈多宏,胡学玲,盛彦清,等,2009.典型污水处理厂中多环麝香的污染特征[J].生态环境学报,18(1):101-105.
    陈国强,王剑,2017.粉末活性炭投加量对原水中有机物的去除及其分子量分布的影响[J].净水技术,36(S1):45-49.
    陈康林,龚建周,陈晓越,等,2016.广州城市绿色空间与地表温度的格局关系研究[J].生态环境学报,25(5):842-849.
    冯柳,2011.松花江水环境中多环麝香的分布特征研究[D].哈尔滨:哈尔滨工业大学.
    胡洪营,王超,郭美婷,2005.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展[J].生态环境学报,14(6):947-952.
    胡正君,史亚利,蔡亚岐,2010.气相色谱-质谱法测定人体血液样品中合成麝香[J].环境化学,29(3):530-535.
    刘俊,梅荣武,李军,等,2013.流化床/Fenton法处理制药废水研究[J].中国给水排水,29(3):70-73.
    卢玢宇,2016.松花江污染物合成麝香的时空分布特征及生物毒性研究[D].哈尔滨:哈尔滨工业大学.
    马莉,敬烨,周静,等,2014.太湖梅梁湾水体合成麝香的分布特征[J].环境化学,33(4):630-635.
    牛建瑞,李宗泽,李文亚,等,2016.Fenton技术在水处理中的应用研究进展[J].煤炭与化工,39(12):71-75,147.
    陶燕,米生权,王式功,2008.活性炭及不同土壤吸附-超临界CO2再生四氯乙烯的特性[J].生态环境学报,17(2):478-483.
    田艺心,王美娥,陈卫平,等,2011.污水和污泥中的人工合成麝香分析方法[J].生态学杂志,30(2):395-400.
    王汉道,冯振杰,赵娜,2014.Fenton法-聚合氯化铝预处理高浓度乳化液废水[J].生态环境学报,23(8):1327-1331.
    王罗春,闻人勤,丁恒如,2001.Fenton试剂处理难降解有机废水及其应用[J].环境保护科学,27(3):11-14.
    王征,2012.气相色谱-负化学源-三重四极杆质谱法测定化妆品中的硝基麝香类化合物[J].色谱,30(11):28-32.
    张蓉蓉,2013.Fenton试剂处理邻氯苯胺废水的研究[J].化学工业与工程技术,34(2):45-47.
    张彦,朱珠,庞涛,等,2009.不同因素对活性炭吸附马拉硫磷的影响研究[J].南通大学学报(自然科学版),8(3):55-57.
    周启星,王美娥,范飞,等,2008.人工合成麝香的环境污染、生态行为与毒理效应研究进展[J].环境科学学报,28(1):1-11.
    周志洪,赵建亮,魏晓东,等,2017.珠江广州段水体抗生素的复合污染特征及其生态风险[J].生态环境学报,26(6):1034-1041.
    庄绪亮,2007.土壤复合污染的联合修复技术研究进展[J].生态学报,27(11):4871-4876.