外源茉莉酸甲酯对盐胁迫下玉米根系吸水的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Exogenous Methyl Jasmonate on Water Absorption of Maize Roots Under Salt Stress
  • 作者:严加坤 ; 严荣 ; 汪亚妮
  • 英文作者:YAN Jiakun;YAN Rong;WANG Yani;Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area/College of life science,Yulin University;
  • 关键词:茉莉酸 ; 盐胁迫 ; 根系水力学导度 ; 水通道蛋白 ; 玉米
  • 英文关键词:Jasmonic acid;;salt stress;;root hydraulic conductance;;aquaporin;;maize
  • 中文刊名:GDNY
  • 英文刊名:Guangdong Agricultural Sciences
  • 机构:榆林学院生命科学学院陕西省陕北矿区生态修复重点实验室;
  • 出版日期:2019-03-14 09:49
  • 出版单位:广东农业科学
  • 年:2019
  • 期:v.46
  • 基金:陕西省陕北矿区生态修复重点实验室开放基金(KFXM201803,ZZXM201802,KFXM201807);; 榆林学院高层次人才项目(17GK19,17GK18)
  • 语种:中文;
  • 页:GDNY201901002
  • 页数:6
  • CN:01
  • ISSN:44-1267/S
  • 分类号:7-12
摘要
【目的】茉莉酸作为一种重要的植物激素在植物应答生物胁迫及非生物胁迫中起到重要作用。然而以往针对茉莉酸提高植物非生物胁迫的研究主要集中在茉莉酸提高植物抗氧化能力来提高植物抗性的研究,而其对植物水分平衡的影响研究相对较少。【方法】通过水培(1/4 Hoaglands营养液)条件下外源施加茉莉酸甲酯(1μmol/L)处理解析短期(2 h)盐(100 mmol/L)胁迫下茉莉酸对玉米根系吸水能力的影响,以期为玉米抗盐碱育种提供理论依据。【结果】外源施加茉莉酸甲酯分别提高盐胁迫下根系生物量41.32%,地上部生物量40.69%;同时,对生理指标分析发现:外源施用茉莉酸甲酯能有效提高盐胁迫下玉米净光合速率(47.48%)、蒸腾速率和叶水势及叶相对含水量等叶片相关生理指标;盐胁迫下玉米高根系水力学导度(相比非茉莉酸处理提高41.60%)对维持高蒸腾速率与叶相对含水量起到重要作用。此外,通过外源氯化汞抑制试验表明茉莉酸甲酯处理下高的根系水力学导度与水通道蛋白活性显著相关。【结论】盐胁迫下茉莉酸能够通过调控玉米根系水通道蛋白活性提高玉米根系水力学导度从而提高玉米根系吸水能力进而维持茉莉酸处理下玉米高的叶面蒸腾速率及高的叶片相对含水量。
        【Objective】Jasmonic acid(JA), as an important plant hormone, plays an important role in plants' response to biological stress and abiotic stress. However, the previous researches on the improvement of plant abiotic stress in JA acid mainly focused on JA to improve the antioxidant ability of plants to improve plant resistance, and its effect on plant water balance was relatively few. Although exogenous JA application is known to enhance plant stress tolerance, the underlying mechanisms involved in this process are still poorly understood.【Method】The influence of methyl jasmonate(MeJA, 1 μmol/L) on water absorption of maize roots under short-term(2 h) salt(100 mmol//L) stress was analyzed by applying the methyl jasmonate(1 μmol/L) in an exogenous manner under hydroponics(1/4 Hoaglands nutrient solution)conditions in order to provide a theoretical basis for salt-alkali-resistant maize breeding.【Result】Exogenous methyl jasmonate improved the root biomass and aboveground biomass by 41.32% and 40.69% respectively under salt stress.Moreover, physiological indicator analysis showed that exogenous methyl jasmonate significantly enhanced the physiological indicators of leaves such as net photosynthetic rate(47.48%), transpiration rate, leaf water potential, relative water content ofleaf under salt stress; high root hydraulic conductivity(increased by 41.60% compared with non-jasmonate condition) played an important role in maintaining high transpiration rate and relative water content of leaf under salt stress. In addition, exogenous mercuric chloride inhibition test indicated that, under methyl jasmonate conditions, the high root hydraulic conductivity correlated significantly with the aquaporin activity. 【Conclusion】Under salt stress, jasmonate could improve the root hydraulic conductivity of maize by regulating the aquaporin activity in maize roots, thus maintaining high leaf transpiration rate and relative water content of leaf under jasmonate conditions by increasing the water absorption of maize roots.
引文
[1]ZHU J K.Abiotic Stress Signaling and Responses in Plants[J].Cell,2016,167(2):313-324.
    [2]TOUNEKTI T,MOSBAH MAHDHI,AL-TURKI TA,KHEMIRAH.Physiological Responses of the Halophyte Salvadora persica to the Combined Effect of Salinity and Flooding[J].International Journal of Agriculture and Biology,2018,20(10):2211-2220.
    [3]WU H,LIU X,YOU L,ZHANG L,ZHOU D,FENG J.Effects of salinity on metabolic profiles,gene expressions,and antioxidant enzymes in Halophyte Suaeda salsa[J].Journal of Plant Growth Regulation,2012,31(3):332-341.
    [4]LIU P,YIN L,WANG S,ZHANG M,DENG X,ZHANG S.Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L[J].Environmental and Experimental Botany,2015,111(3):42-51.
    [5]HORIE T,KANEKO T,SUGIMOTO G,SASANO S,PANDA SK,SHIBASAKA M.Mechanisms of water transport mediated by PIPaquaporins and their regulation via phosphorylation events under salinity stress in Carley Eoots[J].Plant&Cell Physiology,2011,52(4):663-675.
    [6]YIN L,WANG S,LI J,TANAKA K,OKA M.Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J].Acta Physiologiae Plantarum.,2013,35(11):3099-3107.
    [7]QIAN Z J,SONG J J,CHAUMONT F,YE Q.Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses[J].Plant,Cell&Environment,2014,38(3):461-473.
    [8]STEUDLE E,PETERSON CA.How does water get through roots[J].Journal of Experimental Botany,1998,49(322):775-788.
    [9]FARMER E E,RYAN C A.Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors[J].The Plant Cell,1992,4(2):129-134.
    [10]SEO H S,SONG J T,CHEONG J J,LEE Y H,LEE Y W,HWANG I.Jasmonic acid carboxyl methyltransferase:a key enzyme for jasmonateRegulated plant responses[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(8):4788-4793.
    [11]ABOUELSAAD I,RENAULT S.Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress[J].Journal of Plant Physiology,2018,226(3):136-144.
    [12]ALAM M M,NAHAR K,H ASANUZZAMAN M,FUJITA M.Exogenous jasmonic acid modulates the physiology,antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species[J].Plant Biotechnology Reports,2014,8(3):279-293.
    [13]LI C Y,LIU G H,XU C C,LEE G I,BAUER P,LING H Q.The tomato Suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression[J].The Plant Cell,2003,15(7):1646-1661.
    [14]QIU Z,GUO J,ZHU A,ZHANG L,ZHANG M.Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J].Ecotoxicology and Environmental Safety,2014,104:202-208.
    [15]XU Y H,LIAO Y C,ZHANG Z,LIU J,SUN P W,GAO Z H.Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis[J].Scientific reports,2016,6:21843.
    [16]SANCHEZ-ROMERA B,RUIZ-LOZANO J M,LI G,LUU D T,MARTINEZ-BALLESTA MDEL C,CARVAJAL M.Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process[J].Plant,Cell&Environment,2014,37(4):995-1008.
    [17]LIU P,YIN L,DENG X,WANG S,TANAKA K,ZHANG S.Aquaporinmediated increase in root hydraulic conductance is involved in siliconinduced improved root water uptake under osmotic stress in Sorghum bicolor L[J].Journal of experimental botany,2014,65(17):4747-4756.
    [18]BARRS H,WEATHERLEY P.A.re-examination of the relative turgidity technique for estimating water deficits in leaves[J].Australian Journal of Biological Sciences,1962,15(3):413-428.
    [19]YAN J K,ZHANG N N,WANG N,LI Y P,ZHANG S Q,WANG SW.Variations in adaptation strategies of wheat cultivar replacements under short-term osmotic stress[J].Pakistan Journal of Botany,2016,48(3):917-924.
    [20]ZHAO C X,DENG X P,SHAN L,STEUDLE E,ZHANG S Q,YE Q.Changes in root hydraulic conductivity during wheat evolution[J].Journal of Integrative Plant Biology,2005,47(3):302-310.
    [21]刘朋.硅增强高粱抗干旱、盐和镉胁迫能力以及缓解钾缺乏的作用机制研究[D].杨凌:中国科学院研究生院(教育部水土保持与生态环境研究中心),2014.LIU P.The mechanism of silicon on enhancing sorghum resistance to drought,salt,cadmium,K-deficiency[D].Yangling:UCAS,2014.
    [22]FLOWERS TJ.Improving crop salt tolerance[J].Journal of Experimental Botany,2004,55(396):307-319.
    [23]KATERJI N,HOORN JWV,HAMDY A,MASTRORILLI M.Salinity effect on crop development and yield,analysis of salt tolerance according to several classification methods[J].Agricultural Water Management,2003,62(1):37-66.
    [24]GHAZARYAN K,CHEN Y.Hydrochemical assessment of surface water for irrigation purposes and its influence on soil salinity in Tikanlik oasis,China[J].Environmental Earth Sciences,2016,75(5):1-15.
    [25]GLENN E P,BROWN J J,BLUMWALD E.Salt tolerance and crop potential of Halophytes[J].Critical Reviews in Plant Sciences,1999,18(2):227-255.
    [26]ROY S J,NEGR?O S,TESTER M.Salt resistant crop plants[J].Current Opinion in Biotechnology,2014,26(4):115-124.
    [27]GOMBOS Z,WADA H,MURATA N.The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids:a mechanism of chilling tolerance[J].Proceedings of the National Academy of Sciences of the United States of America,1994,91(19):8787-8791.
    [28]LIU C,LI C,LIANG D,MA F,WANG S,WANG P.Aquaporin expression in response to water-deficit stress in two Malus species:relationship with physiological status and drought tolerance[J].Plant Growth Regulation,2013,70(2):187-197.
    [29]WANG W,YANG X,ZHANG S,SUN Y.The root cortex cell hydraulic conductivity is enhanced with increasing chromosome ploidy in wheat[J].Plant Physiology and Biochemistry,2013,68:37-43.