GaAs纳米颗粒快速熔化过程的分子动力学模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular dynamics simulation of the rapid melting process of Ga As nanoparticles
  • 作者:周尧 ; 陈茜 ; 朱新宇
  • 英文作者:ZHOU Yao;CHEN Qian;ZHU Xinyu;College of Big Data and Information Engineering,Guizhou University;
  • 关键词:分子动力学 ; GaAs纳米颗粒 ; 快速熔化过程
  • 英文关键词:molecular dynamics;;GaAs nanoparticles;;rapid melting process
  • 中文刊名:GZDI
  • 英文刊名:Journal of Guizhou University(Natural Sciences)
  • 机构:贵州大学大数据与信息工程学院;
  • 出版日期:2019-04-28 07:00
  • 出版单位:贵州大学学报(自然科学版)
  • 年:2019
  • 期:v.36
  • 基金:贵州省科技计划项目(黔科合平台人才[2017]5788)
  • 语种:中文;
  • 页:GZDI201902010
  • 页数:4
  • CN:02
  • ISSN:52-5002/N
  • 分类号:55-58
摘要
采用分子动力学方法模拟1×1011K/s熔速下理想闪锌矿结构GaAs纳米颗粒(NPs)快速熔化过程中的微观结构演变,并采用径向分布函数、平均原子势能、平均配位数和可视化等方法对熔化过程中的微观结构变化进行分析。结果表明,高温下As容易以As蒸汽形式脱离体系;GaAs NPs依赖晶格极化、变形来减少过高的表面势能;由于颗粒不同位置上原子的势能大不相同,导致各区域熔化所需外界提供能量大小有所差异,GaAs NPs呈现出阶段性、区域性的熔化现象; GaAs NPs中部分闪锌矿结构的极化扭曲导致体系中纤锌矿结构形成。
        Molecular dynamics method was used to simulate the microstructure evolution of ideal cubic diamond structure GaAs nanoparticles( NPs) when the melting rate is 1×1011 K/s.The pair distribution function,average atomic potential energy,average coordination number and visualization were also used to analyze the microstructure changes during the rapid melting process. The results show that As can be easily separated from the system in forms of As vapor at high temperature; the forces on the surface cause the outer surface particles to be in a higher energy state that reduced bypolarizationand deformation; GaAs NPs exhibit stepwise and regional melting phenomena due to the difference in potential energy of atoms at different locations,and the melting of each zone requires different amounts of energy provided externally; the partial polarization and deformation of some cubic diamond structures result in the formation of hexagonal diamond structures in the system.
引文
[1]Hirasawa M,Ichikawa N,Egashira Y,et al. Synthesis of Ga As nanoparticles by digital radio frequency sputtering[J]. Applied Physics Letters,1995,67(23):3483-3485.
    [2]Kwong H H,Feng Y P,Boo T B. Composition dependent properties of Ga As clusters[J]. Computer Physics Communications,2001,142(1-3):290-294.
    [3]Yuan C,Jiang Z,Ye S. Strain-induced matrix-dependent deformation of Ga As nanoparticles[J]. Nanoscale,2013,6(2):1119-1123.
    [4]Albe K,Nordlund K,Nord J,et al. Modeling of compound semiconductors:Analytical bond-order potential for Ga,As,and Ga As[J]. Physical Review B,2002,66(3):035205.
    [5]Tersoff J. Modeling solid-state chemistry:Interatomic potentials for multicomponent systems.[J].Physical Review. B,Condensed Matter,1989,39(39):5566-5568.
    [6]Brackbill J U,Kothe D B,Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335-354.
    [7]Sung I H,Lee H S,Kim D E. Effect of surface topography on the frictional behavior at the micro/nano-scale[J]. Wear,2003,254(10):1019-1031.
    [8]Stringfellow G B. Organometallic Vapor-Phase Epitaxy[J]. Concise Encyclopedia of Semiconducting Materials&Related Technologies,1989,42(8):349-353.
    [9]Strouse,Gregory F.(1999).“NIST realization of the gallium triple point”. National Institute of Standards andTechnology. Proc.TEMPMEKO 1999,1(1999):147-152. Retrieved 2016-10-30.
    [10]Earnshaw A,Greenwood N. Chemistry of the Elements(Second Edition)[M]. England:Butterworth-Heinemann,1998,42(1):10-15.
    [11]Wang B X,Zhou L P,Peng X F. Surface and size effects on specific heat capacity of nanoparticle[J]. Journal of Thermal Science and Technology,2004,3(1):1-6.
    [12]Dimitrov D A,Ankudinov A L,Bishop A R,et al. Pair distribution function and x-ray absorption signatures of rotational and radial local distortions in a model system with average long-range order[J]. Physical Review B,1998,58(21):14227-14237.
    [13]Henini M. Handbook Series on Semiconductors Parameters[M].Singapore:World Scientific,1996:196-197.
    [14]Tiedje T,Abeles B,Persans P D,et al. Bandgap and resistivity of amorphous semiconductor superlattices[J]. Journal of Non-Crystalline Solids,1984,66(1-2):345-35.