氮磷添加对互花米草-土壤系统碳分配的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Nitrogen and Phosphorus Addition on Photosynthesized Carbon Allocation in Spartina alterniflora-Soil System
  • 作者:时宇 ; 黄黄 ; 冉珊珊 ; 刘金娥 ; 苏海蓉 ; 余培培
  • 英文作者:SHI Yu;HUANG Huang;RAN Shan-shan;LIU Jin-e;SU Hai-rong;YU Pei-pei;School of Environment,Nanjing Normal University/Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application;Jiangsu Engineering Laboratory of Water and Soil Eco-remediation;
  • 关键词:氮添加 ; 磷添加 ; 光合碳 ; 互花米草 ; 稳定碳同位素 ; 碳分配
  • 英文关键词:nitrogen addition;;phosphorus addition;;photosynthetic carbon;;Spartina alterniflora;;stable carbon isotope;;carbon allocation
  • 中文刊名:NCST
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:南京师范大学环境学院/江苏省地理信息资源开发与利用协同创新中心;江苏省水土环境生态修复工程实验室;
  • 出版日期:2019-05-27 09:16
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:v.35;No.173
  • 基金:国家自然科学基金(41773077,41273082);; 科技部重大研究计划(2014CB953800);; 江苏省环保课题(2017021)
  • 语种:中文;
  • 页:NCST201905011
  • 页数:7
  • CN:05
  • ISSN:32-1766/X
  • 分类号:85-91
摘要
采用~(13)C脉冲标记方法分析不同氮(N)、磷(P)添加水平下互花米草(Spartina alterniflora)植株及根系土壤有机碳δ_C~(13)含量变化,比较不同N、P添加水平对光合碳分配和固定的差异,探讨N、P添加对光合碳在互花米草-土壤系统分配和固定的影响。结果表明第4次脉冲标记后各处理组各组分~(13)C丰度均明显提高,除NP1处理外其他处理~(13)C丰度均呈现茎、叶、根、根际土壤和土体递减的规律,与对照组(CK)变化一致。各处理组~(13)C固定总量分别呈持续增加趋势,但均低于CK组,NP添加处理~(13)C平均固定量大于单独添加N或P处理。在植物发育过程中,光合碳在互花米草地上部分(叶、茎)分配比例逐渐减小,地下部分(根、根际土壤和土体)分配比例逐渐增大,土壤中有机碳~(13)C发生富集;且随着植物的发育,各处理组间互花米草-土壤系统各组分~(13)C分配比例差异越来越小,趋于一致。N添加组根际土壤和土体~(13)C分配比例随着N添加水平的增加而增加,说明施N能促进光合碳向土壤转移。P添加组在中等P水平(P2)下,植物光合碳地下部分分配比例最高,有利于光合碳向地下转移。NP添加组在中等NP配施水平(NP2)下,地下部分~(13)C分配比例最高,根际土壤和土体~(13)C分配比例随NP添加水平的增加而增加。N、P添加水平及营养盐类型能改变光合碳在互花米草-土壤系统的分配,表明富营养化作用对盐沼生态系统碳循环具有显著生态效应。
        The changes of ~(13)C content in ~(13)C pulse-labeled Spartina alterniflora plants and root soil organic carbon were analyzed under different levels of nitrogen(N)and phosphorus(P). The effects of N and P addition levels on the distribution and fixation of photosynthetic carbon in S. alterniflora-soil system were studied. The results show that the abundance of ~(13)C in each treatment group was significantly increased after four pulse marks. Except for the treatment of NP1,the abundance of ~(13)C showed a decreasing trend in the order of stem,leaf,root,rhizosphere soil and soil,which was consistent with the control group(CK). The total amount of ~(13)C fixed in each treatment group show a trend of continuous increase,but it was lower than that of the control group. The average fixed ~(13)C amount of NP treatment was higher than that of N or P treatment alone. During the development of plants,the proportion of photosynthetic carbon in the aboveground gradually decreased while the proportion of underground gradually increased,and the accumulation of organic carbon ~(13)C in soil was enhanced. With the development of plants,the differences in the distribution of ~(13)C in each part of S. alterniflora-soil system became similar and tend to be consistent. In the N-added group,the allocation ratio of carbon in rhizosphere soil and soil increased with the increase of N addition level,indicating that N application could promote the transfer of photosynthetic carbon to soil. In the P-added group,the highest underground allocation ratio of photosynthetic carbon was observed in the medium level of P addition treatment(P2),which was conducive to the underground transfer of photosynthetic carbon. In the NP-added group,the aboveground distribution ratio was the highest at medium NP level(NP2),and the distribution ratio of rhizosphere soil and soil increased with the increase of NP addition. The addition levels of N and P and types of nutrients can change the distribution of photosynthetic carbon in S. alterniflora-soil system,indicating that eutrophication had significant ecological effects on the carbon cycle in salt marsh ecosystem.
引文
[1]DANNENBERG S,CONRAD R.Effect of Rice Plants on Meth-ane Production and Rhizospheric Metabolism in Paddy Soil[J].Biogeochemistry,1999,45(1):53-71.
    [2]申建波,张福锁,毛达如.根际微生态系统中的碳循环[J].植物营养与肥料学报,2001,7(2):232-240.[SHEN Jian-bo,ZHANG Fu-suo,MAO Da-ru.Carbon Cycling in Rhizosphere Mi-croecological System[J].Plant Nutrition and Fertilizer Science,2001,7(2):232-240.]
    [3]周广胜,王玉辉,许振柱,等.中国东北样带碳循环研究进展[J].自然科学进展,2003,13(9):917-922.
    [4]HIDAKA A,KITAYAMA K.Divergent Patterns of Photosynthetic Phosphorus-Use Efficiency Versus Nitrogen-Use Efficiency of Tree Leaves Along Nutrient-Availability Gradients[J].Journal of Ecology,2009,97(5):984-991.
    [5]安婷婷,汪景宽,李双异,等.施用有机肥对黑土团聚体有机碳的影响[J].应用生态学报,2008,19(2):369-373.[ANTing-ting,WANG Jing-kuan,LI Shuang-yi,et al.Effects of Ma-nure Application on Organic Carbon in Aggregates of Black Soil[J].Chinese Journal of Applied Ecology,2008,19(2):369-373.]
    [6]乔云发,韩晓增,赵兰坡.长期定量施肥对玉米光合碳分配的影响[J].水土保持学报,2010,24(4):208-212.[QIAOYun-fa,HAN Xiao-zeng,ZHAO Lan-po.The Respond of Photo-synthetic Carbon Allocation of Maize to Long-Term Fertilization[J].Journal of Soil and Water Conservation,2010,24(4):208-212.]
    [7]齐鑫,王敬国.应用13C脉冲标记方法研究不同施氮量对冬小麦净光合碳分配及其向地下输入的影响[J].农业环境科学学报,2008,27(6):2524-2530.[QI Xin,WANG Jing-guo.Distri-bution and Translocation of Assimilated C Pulse-Labeled With13C for Winter Wheat(Trticum aestivums L.),as Affected by Ni-trogen Supply[J].Journal of Agro-Environment Science,2008,27(6):2524-2530.]
    [8]TONG C,WANG C,HUANG J F,et al.Ecosystem Respiration Does not Differ Before and After Tidal Inundation in Brackish Marshes of the Min River Estuary,Southeast China[J].Wet-lands,2014,34(2):225-233.
    [9]王刚,杨文斌,王国祥,等.互花米草海向入侵对土壤有机碳组分、来源和分布的影响[J].生态学报,2013,33(8):2474-2483.[WANG Gang,YANG Wen-bin,WANG Guo-xiang,et al.The Effects of Spartina alterniflora Seaward Invasion on Soil Or-ganic Carbon Fractions,Sources and Distribution[J].Acta Eco-logica Sinica,2013,33(8):2474-2483.]
    [10]WANG M,WANG Q,SHA Y C,et al.Spartina alterniflora Inva-sion Affects Soil Carbon in a C3Plant-Dominated Tidal Marsh[J].Scientific Reports,2018,8(1):628.DOI:10.1038/s41598-017-19111-1.
    [11]陈怀璞,张天雨,葛振鸣,等.崇明东滩盐沼湿地土壤碳氮储量分布特征[J].生态与农村环境学报,2017,33(3):242-251.[CHEN Huai-pu,ZHANG Tian-yu,GE Zhen-ming,et al.Distribution of Soil Carbon and Nitrogen Stocks in Salt Marsh Wetland in Dongtan of Chongming[J].Journal of Ecology and Rural Environment,2017,33(3):242-251.]
    [12]刘萍,江春玉,李忠佩.13C脉冲标记定量研究施氮量对光合碳在水稻-土壤系统中分布的影响[J].土壤学报,2015,52(3):567-575.[LIU Ping,JIANG Chun-yu,LI Zhong-pei.Quantita-tive Research on Effects of Nitrongen Application Rate on Distribution of Photosynthetic Carbon in Rice-Soil System Using 13C Pulse Labeling Technique[J].Acta Pedologica Sinica,2015,52(3):567-575.]
    [13]NIKLAUS P A,GlCKLER E,KRNER R S.Carbon Allocation in Calcareous Grassland Under Elevated CO2:A Combined 13C Pulse-Labelling/Soil Physical Fractionation Study[J].Function-al Ecology,2001,15(1):43-50.
    [14]LU Y,WATANABE A,KIMURA M.Carbon Dynamics of Rhi-zodeposits,Root-and Shoot-Residues in a Rice Soil[J].Soil Biology & Biochemistry,2003,35(9):1223-1230.
    [15]安婷婷,汪景宽,李双异,等.用13C脉冲标记方法研究施肥与地膜覆盖对玉米光合碳分配的影响[J].土壤学报,2013,50(5):948-955.[AN Ting-ting,WANG Jing-kuan,LI Shuang-yi,et al.Effect of Fertilization and Plastic Film Mulching on Distribution of Photosynthetically Fixed Carbon in Maize:Explored With 13C Pulse Labeling Technique[J].Acta Pedologica Sinica,2013,50(5):948-955.]
    [16]山楠,杜连凤,毕晓庆,等.用15N肥料标记法研究潮土中玉米氮肥的利用率与去向[J].植物营养与肥料学报,2016,22(4):930-936.[SHAN Nan,DU Lian-feng,BI Xiao-qiang,et al.Nitrogen Use Efficiency and Behavior Studied With 15N Labeled Fertilizer in Maize in Fluvo-Aquic Soils[J].Plant Nutrition and Fertilizer Science,2016,22(4):930-936.]
    [17]何敏毅,孟凡乔,史雅娟,等.用13C脉冲标记法研究玉米光合碳分配及其向地下的输入[J].环境科学,2008,29(2):446-453.[HE Min-yi,MENG Fan-qiao,SHI Ya-juan,et al.Estimat-ing Photosynthesized Carbon Distribution and Inputs Into Below-Ground in a Maize Soil Following13C Pulse-Labeling[J].Environmental Science,2008,29(2):446-453.]
    [18]WAREMBOURG F R,ESTELRICH H D.Plant Phenology and Soil Fertility Effects on Below-Ground Carbon Allocation for an Annual(Bromus madritensis)and a Perennial(Bromus erectus)Grass Species[J].Soil Biology and Biochemistry,2001,33(10):1291-1303.
    [19]WANG G,LIU F.Carbon Allocation of Chinese Pine Seedlings Along a Nitrogen Addition Gradient[J].Forest Ecology and Management,2014,334:114-121.
    [20]KUZYAKOV Y,DOMANSKI G.Carbon Input by Plants Into the Soil[J].Journal of Plant Nutrition and Soil Science,2015,163(4):421-431.
    [21]WERTH M,KUZYAKOV Y.Three-Source Partitioning of CO2Ef-flux From Maize Field Soil by 13C Natural Abundance[J].Journal of Plant Nutrition and Soil Science,2009,172(4):487-499.
    [22]SPIVAK A C,REEVE J.Rapid Cycling of Recently Fixed Carbon in a Spartina alterniflora System:A Stable Isotope Tracer Experiment[J].Biogeochemistry,2015,125(1):97-114.
    [23]谭立敏,吴昊,李卉,等.不同施氮量下水稻分蘖期光合碳向土壤碳库的输入及其分配的量化研究:13C连续标记法[J].环境科学,2014,35(5):1933-1938.[TAN Li-min,WU Hao,LI Hui,et al.Input and Distribution of Rice Photosynthesized Carbon in the Tillering Stage Under Different Nitrogen Application Following Continuous 13C Labeling[J].Environmental Science,2014,35(5):1933-1938.]
    [24]GE T D,YUAN H Z,ZHU H H,et al.Biological Carbon Assimila-tion and Dynamics in a Flooded Rice-Soil System[J].Soil Biolo-gy and Biochemistry,2012,48:39-46.
    [25]LU Y H,WATANABE A,KIMURA M.Input and Distribution of Photosynthesized Carbon in a Flooded Rice Soil[J].Global Bio-geochemical Cycles,2002,16(4):32.DOI:10.1029/2002GB001864.
    [26]BUTLER J L,BOTTOMLEY P J,GRIFFITH S M,et al.Distribu-tion and Turnover of Recently Fixed Photosynthate in Ryegrass Rhizospheres[J].Soil Biology and Biochemistry,2004,36(2):371-382.
    [27]LAWLOR D W.Carbon and Nitrogen Assimilation in Relation to Yield:Mechanisms Are the Key to Understanding Production Sys-tems[J].Journal of Experimental Botany,2002,53(370):773-787.