缺血性脑中风的发病机制及其常用治疗中药研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on pathogenesis of ischemic stroke and traditional Chinese medicine commonly used for treatment of ischemic stroke
  • 作者:陈孝男 ; 杨爱琳 ; 赵亚楠 ; 屠鹏飞 ; 黄文哲 ; 朱靖博 ; 王永华 ; 胡仲冬 ; 李军
  • 英文作者:ZHU Jing-bo;WANG Yong-hua;HU Zhong-dong;LI Jun;Jiangsu Kanion Pharmaceutical Co., Ltd.;Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine;
  • 关键词:缺血性脑中风 ; 发病机制 ; 中药 ; 研究进展
  • 英文关键词:ischemic stroke;;pathogenesis;;traditional Chinese medicine;;research progress
  • 中文刊名:ZGZY
  • 英文刊名:China Journal of Chinese Materia Medica
  • 机构:北京中医药大学中药学院中药现代研究中心;江苏康缘药业股份有限公司;
  • 出版日期:2018-09-28 13:56
  • 出版单位:中国中药杂志
  • 年:2019
  • 期:v.44
  • 基金:国家自然科学基金面上项目(81573572);; 中央高校基本科研业务费专项(2015-JYB-XYQ-004);; 江苏省“双创计划(双创团队)”项目(苏人才办[2015]26号)
  • 语种:中文;
  • 页:ZGZY201903035
  • 页数:11
  • CN:03
  • ISSN:11-2272/R
  • 分类号:20-30
摘要
脑中风目前已成为世界上第二大致死疾病,其中以缺血性脑中风发病占主导地位。因其具有发病迅速、病情复杂等特点,故缺血性脑中风也是造成残疾的主要神经系统疾病。缺血性脑中风主要起源于动脉粥样硬化,进而引发脑组织能量代谢障碍、兴奋性氨基酸毒性作用、氧化/硝化应激、炎症反应、细胞凋亡、细胞自噬等一系列病理过程。传统单味中药、复方及制剂因其具有多成分、多靶点的组成和治疗特点,可作用于缺血性脑中风不同的发病阶段。该文对近年来缺血性脑中风的发病机制及常用治疗中药最新研究进展进行两方面总结,以期对缺血性脑中风的进一步研究及临床治疗提供参考。
        Stroke has become the second leading cause of death in the world, and the most common type is the ischemic stroke. Due to its rapid onset and complex conditions, ischemic stroke is a major neurological disorder that causes disability. Ischemic stroke mainly results from atherosclerosis, and the pathogenesis of ischemic stroke mainly includes energy metabolism disorders in the brain, the toxicity of excitatory amino acids, oxidative/nitrification stress, inflammatory response, apoptosis, and autophagy. With the characteristics of multi-component and multi-target, traditional Chinese medicine could be used to treat ischemic stroke at different stages. This article summarized the latest research progress on the pathogenesis of ischemic stroke and commonly used traditional Chinese medicine for treatment of ischemic stroke in order to provide references for the further research and clinical treatment of ischemic stroke.
引文
[1] Emelia J Benjamin, Michael J Blaha, Stephanie E Chiuve, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association[J]. Circulation, 2017, 131(4): e29.
    [2] Dhiraj D K, Chrysanthou E, Mallucci G R, et al. miRNAs-19b,-29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke[J]. PLoS ONE, 2013, 8(12): e83717.
    [3] Li W, Suwanwela N C, Patumraj S. Curcumin by down-regulating NF-κB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R[J]. Microvasc Res, 2015, 106:117.
    [4] Heiss W D. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The Johann Jacob Wepfer Award 2011[J]. Cerebrovasc Dis, 2011, 32(4): 307.
    [5] Wasser G. Ischemic stroke penumbra and extracorporeal ozone treatment[J]. Neuroradiol J, 2013, 26(3): 243.
    [6] Zhen Y, Ding C, Sun J, et al. Activation of the calcium-sensing receptor promotes apoptosis by modulating the JNK/p38 MAPK pathway in focal cerebral ischemia-reperfusion in mice[J]. Am J Transl Res, 2016, 8(2):911.
    [7] Guo Q X, Zhang Y, Xu J N, et al. Association between the gene polymorphisms of HDAC9 and the risk of atherosclerosis and ischemic stroke[J]. Pathol Oncol Res, 2016, 22(1):103.
    [8] Adabag S, Huxley R R, Lopez F L, et al. Obesity related risk of sudden cardiac death in the atherosclerosis risk in communities study[J]. Heart, 2015, 101(3): 215.
    [9] Kuipers I, Guala A S, Aesif S W, et al. Cigarette smoke targets glutaredoxin 1, increasing S-glutathionylation and epithelial cell death[J]. Am J Resp Cell Mol, 2011, 45(5): 931.
    [10] Li J J, Fang C H. Atheroscleritis is a more rational term for the pathological entity currently known as atherosclerosis[J]. Med Hypotheses, 2004, 63(1): 100.
    [11] Tabas I, Garcíacardeňa G, Owens G K. Recent insights into the cellular biology of atherosclerosis[J].J Cell Biol, 2015, 209(1): 13.
    [12] Mashudu M, Amanda G, Amanda L, et al. Endothelial dysfunction: the early predictor of atherosclerosis[J]. Caediovasc J Afr, 2012, 23(4): 222.
    [13] Zhang J Y, Liu B, Wang Y N, et al. Effect of rosuvastatin on OX40L and PPAR-γ expression in human umbilical vein endothelial cells and atherosclerotic cerebral infarction patients[J]. J Mol Neurosci, 2014, 52(2): 261.
    [14] Libby P. Inflammation and cardiovascular disease mechanisms[J]. Am J Clin Nutr, 2006, 83(2): 456S.
    [15] Moohebati M, Kabirirad V, Ghayourmobarhan M, et al. Investigation of serum oxidized low-density lipoprotein lgG levels in patients with angiographically defined coronary artery disease[J]. Int J Vasc Med, 2014, 2014(18): 845960.
    [16] 刘素勤. 急性多发性脑梗死的病因及其相关危险因素分析[J]. 医药论坛杂志, 2017, 38(9): 108.
    [17] 王晓慧, 陈虹. 空气栓塞的诊治[J]. 临床荟萃, 2016, 31(4): 355.
    [18] 黄志英, 孙文利, 张晓旭, 等. 高良姜素对缺血性脑卒中大鼠脑线粒体代谢相关酶的影响[J]. 世界中医药, 2015, 10(3): 394.
    [19] Zhao Y, Fu B, Zhang X, et al. Paeonol pretreatment attenuates cerebral ischemic injury via upregulating expression of pAkt, Nrf2, HO-1 and ameliorating BBB permeability in mice[J]. Brain Res Bull, 2014, 109: 61.
    [20] Bo K Siesj?. Pathophysiology and treatment of focal cerebral ischemia Part I: pathophysiology[J]. J Neurosurg, 2008, 108(3): 616.
    [21] Blázquez C, Woods A, Ceballos M L D, et al. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes[J]. J Neurochem, 2010, 73(4): 1674.
    [22] 李潇潇,卢圣锋,朱冰梅.兴奋性氨基酸毒性与缺血性脑中风及针刺的调整作用[J]. 针刺研究, 2016, 41(2): 180.
    [23] Yan W, Qin Z H. Molecular and cellular mechanisms of excitotoxic neuronal death[J]. Apoptosis, 2010, 15(11): 1382.
    [24] Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models[J]. Metab Brain Dis, 2004, 19(3/4): 151.
    [25] Vallon M, Chang J, Zhang H, et al. Developmental and pathological angiogenesis in the central nervous system[J]. Cell Mol Life Sci, 2014, 71(18): 3489.
    [26] Campos F, Sobrino T, Ramoscabrer P, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study[J]. J Cereb Blood Flow Metab, 2011, 31(6): 1378.
    [27] Akos A Gerencser, Karla A Mark, Hubbard A E, et al. Real-time visualization of cytoplasmic calpain activation and calcium deregulation in acute glutamate excitotoxicity[J]. J Neurochem, 2010, 110(3): 990.
    [28] Liao Y, Hao Y, Chen H, et al. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein Cell, 2015, 6(6): 434.
    [29] Zhao L, Li S, Wang S, et al. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury[J]. Biochem Bioph Res Co, 2015, 461(3): 537.
    [30] Chen Y, Li Y, Xu H, et al. Morin mitigates oxidative stress, apoptosis and inflammation in cerebral ischemic rats[J]. Evid Based Compl Alt, 2017, 14(2): 348.
    [31] Adibhatla R M, Hatcher J F. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Sign, 2010, 12(1): 125.
    [32] Saeed S A, Shad K F, Javed F, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke[J]. Exp Brain Res,2007, 182(1): 1.
    [33] Sun S, Chen X, Yang G, et al. Mn-SOD upregulation by electroacupuncture attenuates ischemic oxidative damage via CB1R-mediated STAT3 phosphorylation[J]. Mol Neurobiol, 2016, 53(1): 331.
    [34] 黄继云,韩峰.硝化应激参与介导缺血性脑损伤的研究进展[J]. 神经药理学报, 2011, 1(5): 56.
    [35] Hobbs A J,Fukuto J M,Ignarro L J.Formation of free nitric oxide from l-arginine by nitric oxide synthase:direct enhancement of generation by superoxide dismutase[J].Proc Natl Acad Sci USA, 1994, 91(23):l0992.
    [36] Nakamura T, Prikhodko O A, Pirie E, et al. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases[J]. Neurobiol Dis, 2015, 84: 99.
    [37] Hu X, De Silva T M, Chen J, et al. Cerebral vascular disease and neurovascular injury in ischemic stroke[J]. Circ Res, 2017, 120(3): 449.
    [38] Han F, Fukunaga K. Melatonin ameliorates iscbemic-like injury-evoked nitrosative stress: involvement of HtrA2/PED pathways in endothelial cells[J]. J Pineal Res, 2011, 50(3): 281.
    [39] Nakajima H, Kubo T, Ihara H, et al. Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly(ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke[J]. J Biol Chem, 2015, 290(23): 14493.
    [40] Bai S, Hu Z, Yang Y, et al. Anti-inflammatory and neuroprotective effects of triptolide via the NF-κB signaling pathway in a rat MCAO model[J].Anat Rec, 2016, 299(2): 256.
    [41] Huang J, Li Y, Tang Y, et al. CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice[J]. Stroke, 2013, 44(1): 190.
    [42] Shichita T, Ito M, Yoshimura A. Post-ischemic inflammation regulates neural damage and protection[J]. Front Cell Neurosci, 2014, 8 (319): 319.
    [43] Arimura K, Ago T, Kamouchi M, et al. PDGF receptor β signaling in pericytes following ischemic brain injury [J]. Curr Neurovasc Res, 2012, 9(1): 1.
    [44] Taylor R A, Sansing L H. Microglial responses after ischemic stroke and intracerebral hemorrhage[J]. Clin Dev Immunol, 2013,2013(3): 746068.
    [45] Cheng C Y, Lee Y C. Anti-inflammatory effects of traditional Chinese medicines against ischemic injury in in vivo models of cerebral ischemia[J]. Evid Based Complement Alternat Med, 2016, 2016(24): 1.
    [46] 段乐,白利群,田苗苗.炎症反应在脑缺血中作用机制研究进展[J]. 中华实用诊断与治疗杂志, 2013, 27(9): 837.
    [47] Xu S, Zhong A, Ma H, et al. Neuroprotective effect of salvianolic acid B against cerebral ischemic injury in rats via the CD40/NF-κB pathway associated with suppression of platelets activation and neuroinflammation[J]. Brain Res, 2017, 1661:37.
    [48] Zhou X, Su S, Li S, et al. MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro[J]. Brain Res, 2016, 1648: 136.
    [49] Liu G, Wang T, Song J, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats[J]. Biomed Rep, 2013, 1(6): 861.
    [50] Zhou J H, Zhang T T, Song D D, et al. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis[J]. Sci Rep UK, 2016, 6: 27096.
    [51] Fan W, Dai Y, Xu H, et al. Caspase-3 modulates regenerative response after stroke[J]. Stem Cells, 2014, 32(2): 473.
    [52] Elmore S. Apoptosis: a review of programmed cell death[J].Toxicol Pathol, 2007, 35(4): 495.
    [53] Zhang Z, Yang X, Zhang S, et al. BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia[J]. Stroke, 2007, 38(5): 1606.
    [54] Wang J, Han D, Sun M, et al. A combination of remote ischemic perconditioning and cerebral ischemic postconditioning inhibits autophagy to attenuate plasma HMGB1 and induce neuroprotection against stroke in rat[J]. J Mol Neurosci, 2016, 58(4): 424.
    [55] Nishida K, Kyoi S, Yamaguchi O, et al. The role of autophagy in the heart[J].Cell Death Differ, 2009, 16(1): 31.
    [56] Wen Y, Zhai R G, Kim M D. The role of autophagy in Nmnat-mediated protection against hypoxia-induced dendritedegeneration[J]. Mol Cell Neurosci, 2013, 52(1): 140.
    [57] Wang P, Guan Y F, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemic [J]. Autophagy, 2012, 8(1): 77.
    [58] Gao L, Jiang T, Guo J, et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats[J]. PLoS ONE, 2012, 7(9): e46092.
    [59] Wei H, Li Y, Han S, et al. cPKCγ-modulated autophagy in neurons alleviates ischemic injury in brain of mice with ischemic stroke through Akt-mTOR pathway[J]. Transl Stroke Res, 2016, 7(6):497.
    [60] Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy[J]. Autophagy, 2008, 4(5): 600.
    [61] Liu Y, Levine B. Autosis and autophagic cell death: the darkside of autophagy[J]. Cell Death Differ, 2015, 22(3): 367.
    [62] Carloni S, Girelli S, Scopa C, et al. Activation of autophagy and Akt/CREB signalingplay an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia[J]. Autophagy, 2010, 6(3): 366.
    [63] 石秋艳,杨斌,孙原, 等. Beclin-1、LC3-Ⅱ在缺血后处理大鼠再灌注中的表达及意义[J].中风与神经疾病杂志, 2014, 31(8): 687.
    [64] Sheng R, Zhang L S, Han R, et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning[J]. Autophagy, 2010, 6(4): 482.
    [65] Jiang W W, Huang B S, Han Y, et al. Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing over activated autophagy in rats[J]. Febs Open Bio, 2017, 7(11):1686.
    [66] Shi R, Weng J, Zhao L, et al. Excessive autophagy contributes to neuron death in cerebral ischemia[J]. Cns Neurosci Ther, 2012, 18(3): 250.
    [67] Baek S H, Noh A R, Kim K A, et al. Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemicbrain damage[J]. Stroke, 2014, 45(8): 2438.
    [68] 曾斌,王静文,张玉琳,等.自噬标志性分子LC3B在大鼠全脑缺血复灌损伤中海马CA1区的表达及意义[J]. 中国临床解剖学杂志, 2012, 30(6): 667.
    [69] 江建忠, 王倩, 顾沿泊,等.中医治疗缺血性脑卒中研究现状与趋势系统综述[J]. 实用中医内科杂志, 2015, 29(7): 4.
    [70] 陈梅,王立新.中药联合干细胞疗法治疗缺血性脑卒中的研究进展[J].中国实验方剂学杂志,2017,23(19):218.
    [71] Chow M S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics and clinical use[J]. J Clin Pharmacol, 2013, 53(8): 787.
    [72] Jae Chul L, Ha P J, Kyu P O, et al. Neuroprotective effects of tanshinone Ⅰ from Danshen extract in a mouse model of hypoxia-ischemia[J]. Anat Cell Biol, 2013, 46(3):183.
    [73] Fei Y X, Wang S Q, Yang L J, et al. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats[J]. J Ethnopharmacol, 2017, 207(31): 57.
    [74] 刘媛,彭建伟,孟改,等.丹参多酚酸对急性缺血性脑卒中患者脑灌注影响的临床观察[J]. 中华老年心脑血管病杂志, 2017, 19(7): 738.
    [75] 金玉青,洪远林,李建蕊,等.川芎的化学成分及药理作用研究进展[J]. 中药与临床, 2013, 4(3): 44.
    [76] 俞茹云,过忆,林莉莉. NF-κB通路与川芎提取物抗脑缺血作用相关性研究[J]. 南京中医药大学学报, 2017, 33(1): 74.
    [77] 盛艳梅, 孟宪丽, 李春雨, 等.川芎挥发油对大鼠大脑皮层神经细胞体外存活及脑缺血再灌注损伤的影响[J]. 时珍国医国药, 2012, 23(3): 536.
    [78] Gu J, Su S, Guo J, et al. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats[J].J Pharm Pharmacol, 2018, 70(2): 268.
    [79] 孙余明,楼建涛,黄光强.川芎素在脑出血早期应用的临床研究[J]. 中国中药杂志, 2008, 33(21): 2545.
    [80] Wang W, Kang Q, Liu N, et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion[J]. Fitoterapia, 2015, 102: 189.
    [81] 张学非, 曹泽彧, 许治良,等.银杏内酯治疗脑缺血作用机制的研究进展[J]. 中草药, 2016, 47(16): 2943.
    [82] Tulsulkar J, Shah Z A. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism[J]. Neurochem Int, 2013, 62(2): 189.
    [83] 张雯, 宋俊科, 何国荣, 等.银杏二萜内酯对缺血/再灌注大鼠脑组织中神经递质的影响[J]. 中国药理学通报, 2016, 32(12): 1648.
    [84] Xu L, Hu Z, Shen J, et al. Effects of Ginkgo biloba extract on cerebral oxygen and glucose metabolism in elderly patients with pre-existing cerebral ischemia[J]. Complement Ther Med, 2015, 23(2): 220.
    [85] 曹玉冰.黄芪甲苷的药理作用及其机制的研究进展[J]. 现代药物与临床, 2017, 32(5): 954.
    [86] Yin Y Y, Li W P, Gong H L, et al. Protective effect of astragaloside on focal cerebral ischemia/reperfusion injury in rats[J].Am J Chinese Med, 2010, 38(3): 517.
    [87] Li M, Qu Y Z, Zhao Z W, et al. Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules[J]. Neurochem Int, 2012, 60(5): 458.
    [88] 苏韫, 刘永琦, 颜春鲁, 等.黄芪多糖对脑缺血再灌注大鼠脑组织Bcl-2、Bax蛋白及NO含量的影响[J]. 西部中医药, 2016, 29(3): 10.
    [89] 马丽虹,李可建. 黄芪注射液治疗缺血性中风急性期随机对照试验的Meta分析[J]. 辽宁中医杂志, 2010, 37(8): 1438.
    [90] Huang L F, Li B Y, Liang Y Z, et al. Application of combine dapproach to analyze the constituents of essential oil from Dong Quai[J]. Anal Bioanal Chemist, 2004, 378(2): 510.
    [91] Zheng C J, Liao W J, Fan M, et al. Effects of Angelica sinensis treatment on the expression of flt-1 and flk-1 mRNA after the ischemic brain injury in rats[J]. Chin J Appl Physiol, 2006, 22(4): 385.
    [92] Cheng C Y, Ho T Y, Hsiang C Y, et al. Angelica sinensis exerts angiogenic and anti-apoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1α/VEGF-A signaling in rats[J]. Am J Chin Med, 2017, 45(8): 1.
    [93] Zhang S, He B, Ge J B, et al. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia-reperfusion rats[J].Int J Biol Macromol, 2010, 47(4): 546.
    [94] 闫安,谢云亮. 当归多糖对脑缺血再灌注损伤大鼠脑组织氧化应激水平及炎症因子表达的影响[J].中国实验方剂学杂志, 2018, 24(2): 123.
    [95] Li B Q, Chen J, Wu T X, et al. Fast determination of four active compounds in Sanqi Panax notoginseng injection samples by high-performance liquid chromatography with achemometric method[J]. J Sep Sci, 2015, 38(9): 1449.
    [96] He L, Chen X, Zhou M, et al. Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study[J]. Phytomedicine, 2011, 18(6): 437.
    [97] 刘抒雯, 刘敬霞, 虎喜成, 等.三七总皂苷治疗缺血性脑卒中研究进展[J]. 中国实验方剂学杂志, 2015, 21(15): 217.
    [98] Hua L, Deng C Q, Chen B Y, et al. Total saponins of Panax notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion[J]. J Ethnopharmacol, 2009, 121(3): 412.
    [99] Yang L, Li J, Wang X, et al. Panax notoginseng and ginsenoside-Rg1 contribute to down-regulation of P-glycoprotein level after the cerebral ischemia/reperfusion in rats[J]. Faseb J, 2015, 29(1): 705.
    [100] 张榆佳,吴萍,许平,等.三七总皂甙对急性脑梗死重组组织型纤溶酶原激活物静脉溶栓后缺血再灌注损伤及出血性转化的影响[J]. 临床与病理杂志, 2017, 37(2): 264.
    [101] 张红祥, 杨和金, 包广雷, 等.灯盏花素主要药效学研究进展[J]. 云南中医中药杂志, 2016, 37(2): 75.
    [102] Guo C, Zhu Y, Weng Y, et al. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats[J]. J Ethnopharmacol, 2014, 151(1): 660.
    [103] 曹小雨,李钊飞,陈琼芳,等.灯盏花素对大鼠脑缺血再灌注损伤相关CYP4A的作用机制[J]. 中国实验方剂学杂志, 2017, 23(5): 101.
    [104] Liu Y M, He W, Lin A H, et al. Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats[J]. J Pharm Pharmacol, 2008, 60(3): 349.
    [105] 刘绪宏,钱华珍,华淑红,等.灯盏花素对缺血性中风局部脑血流量的影响[J]. 临床荟萃, 1999, 14(18): 819.
    [106] 刘晓俊,高敏, 方穗雄,等.灯盏花素注射液治疗急性缺血性中风对血清sICAM-1的影响[J]. 中国中医急症, 2008, 17(4): 476.
    [107] 龙建飞,张秋霞,王蕾,等.补阳还五汤治疗缺血性中风药理作用机制的研究进展[J]. 世界中医药, 2015, 10(5): 805.
    [108] Wei R L, Teng H J, Yin B, et al. A systematic review and meta-analysis of Buyang Huanwu decoction in animal model of focal cerebral ischemia[J]. Evid Based Complement Alternat Med, 2013, 2013(2): 138484.
    [109] Shen J, Zhu Y, Yu H, et al. Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia[J]. J Zhejiang Univ Sci B, 2014, 15(3): 272.
    [110] 徐愉林,秦莎莎, 祝赫,等.补阳还五汤对脑缺血再灌注损伤大鼠血小板Src, Akt和p38 MAPK蛋白的影响[J]. 中国实验方剂学杂志, 2017, 23(5): 135.
    [111] Wang H W, Liou K T, Wang Y H, et al. Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice[J]. J Ethnopharmacol, 2011, 138(1): 22.
    [112] 黄爱华.补阳还五汤治疗中风偏瘫后遗症临床疗效分析[J]. 中药药理与临床, 2015, 31(3): 161.
    [113] 王飞龙, 韩岚, 樊玲, 等. 桃红四物汤对实验性脑缺血大鼠血清中ET-1,Ang-1,VEGF的影响[J]. 中国实验方剂学杂志, 2017, 23(1): 101.
    [114] Wu C J, Chen J T, Yen T L, et al. Neuroprotection by the traditional Chinese medicine, Tao-Hong-Si-Wu-Tang, against middle cerebral artery occlusion-induced cerebral ischemia in rats[J]. Evid Based Compl Alt, 2011(5): 803015.
    [115] Yen T L, Ong E T, Lin K H, et al. Potential advantages of Chinese medicine Taohong Siwu Decoction, combined with tissue-plasminogen activator for alleviating middle cerebral artery occlusion-induced embolic stroke in rats[J]. Chin J Integr Med, 2014, doi:10.1007/s11655-014-1847-x.
    [116] 黄婷, 戴朝博, 梅群超, 等. 桃红四物汤治疗急性脑梗死的疗效及安全性分析[J]. 湖北中医药大学学报, 2014, 16(4): 75.
    [117] 吴艳霞, 吴婷玉, 叶红, 等. 镇肝熄风汤预处理对大脑中动脉梗死大鼠脑组织ET-1表达、TNF-α含量及髓过氧化酶活性的影响[J]. 中国医院药学杂志, 2013, 33(7): 530.
    [118] 吴艳霞, 李秀娟, 马威. 镇肝熄风汤预处理对大脑中动脉梗死大鼠脑组织ET-1和AQP4及AQP9表达的影响[J]. 医药导报, 2013, 19(9): 224.
    [119] 应晓茜. 镇肝熄风汤治疗缺血性脑卒中41例[J]. 吉林中医药, 2011, 31(4): 331.
    [120] 万文成,罗海燕,陈洁文,等.清热解毒开窍醒脑防治脑缺血的实验研究[J]. 深圳中西医结合杂志, 2001, 11(1): 5.
    [121] 孙良明,程发峰,王雪茜,等.清开灵注射液治疗急性中风的系统评价和Meta分析[J]. 中国中医急症, 2016, 25(5): 772.
    [122] 付荣,姜东明.清开灵注射液合血塞通注射液治疗中风后遗症138例临床观察[J]. 中国现代药物应用,2009, 3(7): 132.
    [123] 孙健, 刘辉, 艾君涛, 等.安宫牛黄丸的药理作用研究进展[J]. 中兽医学杂志, 2016, 3: 81.
    [124] Wang G H, Lan R, Zhen X D, et al. An-Gong-Niu-Huang Wan protects against cerebral ischemia induced apoptosis in rats: up-regulation of Bcl-2 and down-regulation of Bax and caspase-3[J]. J Ethnopharmacol, 2014, 154(1): 156.
    [125] 邹振亮, 陈志华, 朱健明.安宫牛黄丸治疗缺血缺氧性脑病患者的临床效果[J]. 医疗装备, 2018, 31(13): 98.
    [126] 冯跃明, 杨辉.安宫牛黄丸治疗急性脑梗死昏迷患者促醒作用的观察[J]. 中国实验方剂学杂志, 2015, 21(6): 179.
    [127] Li A, Zhang J Y, Xiao X, et al. Hepatorenal protective effects of medicinal herbs in An-Gong-Niu-Huang Wan (AGNH) against cinnabar- and realgar-induced oxidative stress and inflammatory damage in mice[J]. Food Chem Toxicol, 2017, 119: 445.
    [128] 吴以岭, 李涛, 李妍, 等. 超微粉碎工艺通心络胶囊治疗中风病的临床研究[J]. 中国中药杂志, 2007,32(18): 1928.
    [129] 吴以岭, 袁国强, 贾振华,等.通心络对大脑中动脉栓塞模型大鼠脑缺血后脑组织caspase-3、P53和HSP70的影响[J]. 中国神经免疫学和神经病学杂志,2007, 14(5): 284.
    [130] 欧阳征,唐红宇,王爱民,等.通心络胶囊治疗早期缺血性脑卒中的临床研究[J]. 现代医药卫生, 2017, 33(11): 1604.