GPS接收机硬件延迟时变特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Time-Varying Characteristic of GPS Receiver Hardware Delay
  • 作者:赵英豪 ; 周乐韬 ; 冯威 ; 姜中山 ; 罗晨曦
  • 英文作者:ZHAO Yinghao;ZHOU Letao;FENG Wei;JIANG Zhongshan;LUO Chenxi;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University;
  • 关键词:GPS ; 接收机 ; DCB ; DPB ; 时变特性 ; 温度
  • 英文关键词:GPS;;receiver;;DCB;;DPB;;time-varying characteristic;;temperature
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:西南交通大学地球科学与环境工程学院;
  • 出版日期:2019-04-16 17:29
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家重点研发计划(2016YFB0501900);; 国家自然科学基金(41104020,41374032)~~
  • 语种:中文;
  • 页:WHCH201908015
  • 页数:8
  • CN:08
  • ISSN:42-1676/TN
  • 分类号:109-116
摘要
在全球定位系统(Global Positioning System, GPS)中,接收机硬件延迟引起的码偏差和相位偏差是影响精密授时、电离层建模以及非差模糊度解算的重要因素。利用GPS对电离层总电子含量进行估计和建模时,通常假定GPS接收机硬件延迟偏差是稳定不变的量,对其可能存在的波动及影响因素考虑不充分。因此,对GPS接收机硬件延迟偏差的时变特性进行分析,有助于提高电离层电子含量估值的准确性和可靠性。分析了GPS接收机差分码偏差(differential code bias, DCB)和差分相位偏差(differential phase bias,DPB)单历元及单天解的时间变化特性,并对温度变化与接收机DCB、DPB变化之间的相关性进行了实验探究。结果表明,接收机重启前后其DCB值会发生突变,重启之后接收机DCB和DPB大约需要25 min才能趋于稳定。接收机DCB和DPB并不能长期保持稳定,实验数据显示,在2~3 h内,DCB的变化量可以达到0.8 m左右,DPB的变化量可以达到4 mm左右,接收机DCB和DPB的波动与周围环境温度的变化具有较强相关性。
        In the Global Positioning System(GPS), the receiver hardware-induced code and phase biases are important factors affecting precise timing, precise modeling of ionosphere and un-difference ambiguity resolution. In the estimation and modeling of ionospheric electron content, it is generally assumed that the GPS receiver hardware biases are constant amounts, without considering the possible fluctuations and influencing factors. Therefore, to analyze the time-varying characteristics of receiver hardware biases can help improve the accuracy and reliability of the ionospheric electron content estimation. In this paper, the time-varying characteristics of single-epoch and single-day solved GPS receiver differential code bias(DCB)and differential phase bias(DPB) are analyzed, and the correlation between the variation of receiver hardware delay and the change of ambient temperature is explored experimentally. The results indicate that receiver DCB will mutate after a restart. And after restarting, the receiver DCB and DPB have a changing process, which takes about 25 min, afterwards they keep stabilized. Also, it's worth noting that the receiver DCB and DPB cannot be stable for a long time. The experimental results show that the change of receiver DCB and DPB can reach about 0.8 m and 4 mm in 2-3 h. In addition, the fluctuation of receiver hardware delay has a strong correlation with the change of the vicinity temperature.
引文
[1]H?kansson M,Jensen A B,Horemuz M,et al.Review of Code and Phase Biases in Multi-GNSS Positioning[J].GPS Solutions,2017,21(3):849-860
    [2]Coco D S,Coker C,Dahlke S R,et al.Variability of GPS Satellite Differential Group Delay Biases[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(6):931-938
    [3]Sardon E,Rius A,Zarraoa N.Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations[J].Radio Science,1994,29(3):577-586
    [4]Chang Qing,Zhang Donghe,Xiao Zuo,et al.AMethod for Estimating GPS Instrumental Biases and Its Application in TEC Calculation[J].Chinese Journal of Geophysics,2001,44(5):596-601(常青,张东和,萧佐,等.GPS系统硬件延迟估计方法及其在TEC计算中的应用[J].地球物理学报,2001,44(5):596-601)
    [5]Ma G,Maruyama T.Derivation of TEC and Estimation of Instrumental Biases from GEONET in Japan[J].Annales Geophysicae,2003,21(10):2 083-2 093
    [6]Ya’acob N,Abdullah M,Ismail M.Determination of GPS Total Electron Content Using Single Layer Model(SLM)Ionospheric Mapping Function[J].International Journal of Computer Science and Network Security,2008,8(9):154-160
    [7]Brunini C,Azpilicueta F.GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Different Geomagnetic Regions and Ionospheric Conditions[J].Journal of Geodesy,2010,84(5):293-304
    [8]Themens D R,Jayachandran P,Langley R,et al.Determining Receiver Biases in GPS-Derived Total Electron Content in the Auroral Oval and Polar Cap Region Using Ionosonde Measurements[J].GPSSolutions,2013,17(3):357-369
    [9]Wang N,Yuan Y,Li Z,et al.Determination of Differential Code Biases with Multi-GNSS Observations[J].Journal of Geodesy,2016,90(3):209-228
    [10]Banville S,Santerre R,Cocard M,et al.Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution[C].The 2008 National Technical Meeting of the Institute of Navigation,San Diego,CA,2008
    [11]Ge M,Gendt G,Rothacher M A,et al.Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning(PPP)with Daily Observations[J].Journal of Geodesy,2008,82(7):389-399
    [12]Geng J,Teferle F N,Shi C,et al.Ambiguity Resolution in Precise Point Positioning with Hourly Data[J].GPS Solutions,2009,13(4):263-270
    [13]Geng J,Shi C,Ge M,et al.Improving the Estimation of Fractional-Cycle Biases for Ambiguity Resolution in Precise Point Positioning[J].Journal of Geodesy,2012,86(8):579-589
    [14]Li X,Zhang X.Improving the Estimation of Uncalibrated Fractional Phase Offsets for PPP Ambiguity Resolution[J].Journal of Navigation,2012,65(3):513-529
    [15]Zhang Xiaohong,Li Pan,Li Xingxing,et al.An Analysis of Time-Varying Property of Widelane Carrier Phase Ambiguity Fractional Bias[J].Acta Geodaetica et Cartographica Sinica,2013,42(6):798-803(张小红,李盼,李星星,等.宽巷载波相位模糊度小数偏差估计及其时变特性分析[J].测绘学报,2013,42(6):798-803)
    [16]Li Z,Yuan Y,Fan L,et al.Determination of the Differential Code Bias for Current BDS Satellites[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(7):3 968-3 979
    [17]Wilson B D,Yinger C H,Feess W A,et al.New and Improved:The Broadcast Interfrequency Biases[J].GPS World,1999,10(9):56-66
    [18]Coster A,Williams J,Weatherwax A,et al.Accuracy of GPS Total Electron Content:GPS Receiver Bias Temperature Dependence[J].Radio Science,2013,48(2):190-196
    [19]Zhang B,Teunissen P J.Characterization of MultiGNSS Between-Receiver Differential Code Biases Using Zero and Short Baselines[J].Science Bulletin,2015,60(21):1 840-1 849
    [20]Leick A,Rapoport L,Tatarnikov D.GPS Satellite Surveying[M].New Jersey:John Wiley and Sons,2015
    [21]Wang M,Gao Y.An Investigation on GPS Receiver Initial Phase Bias and Its Determination[C].The2007 National Technical Meeting of the Institute of Navigation,San Diego,CA,2007
    [22]PanLin,CaiChangsheng,LiShijia.TheCharacteristics of BeiDou Receiver Initial Phase Bias[J].Geomatics and Information Science of Wuhan University,2016,41(3):336-341(潘林,蔡昌盛,李施佳.北斗接收机初始相位偏差特性分析[J].武汉大学学报·信息科学版,2016,41(3):336-341)
    [23]Yuan Yunbin,Zhang Baocheng,Li Min.Precise Estimation and Characteristic Analysis of MultiGNSS Receiver Differential Code Biases[J].Geomatics and Information Science of Wuhan University,2018,43(12):2 106-2 111(袁运斌,张宝成,李敏.多频多模接收机差分码偏差的精密估计与特性分析[J].武汉大学学报·信息科学版,2018,43(12):2 106-2 111)