红球菌跨膜运输荧蒽的差异膜蛋白分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differential membrane protein analysis of Rhodococcus during the transmembrane-transport process of fluoranthene
  • 作者:孔德康 ; 李艺 ; 王红 ; 许洁 ; 关晶晶
  • 英文作者:.KONG De-kang;LI Yi;WANG Hong-qi;XU Jie;GUAN Jing-jing;College of Water Sciences, Beijing Normal University;College of Environment and Resource, Guangxi Normal University;
  • 关键词:红球菌BAP-1 ; 荧蒽 ; 膜蛋白 ; 跨膜运输 ; iTRAQ
  • 英文关键词:Rhodococcus sp.BAP-1;;fluoranthene;;membrane protein;;transmembrane-transport;;iTRAQ
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京师范大学水科学研究院;广西师范大学环境与资源学院;
  • 出版日期:2019-01-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助面上项目(41372232);; 广西高校重点实验室研究基金资助项目(YRHJ152024);; 广西自然科学基金青年基金资助项目(2017GXNSFBA198168)
  • 语种:中文;
  • 页:ZGHJ201901035
  • 页数:7
  • CN:01
  • ISSN:11-2201/X
  • 分类号:276-282
摘要
提取不同时间荧蒽诱导下红球菌BAP-1分泌的膜蛋白,利用同位素标记相对和绝对定量技术(iTRAQ技术)结合液相二级质谱对差异膜蛋白进行聚类以及生物信息学分析.旨在从蛋白质层面上研究红球菌BAP-1跨膜运输荧蒽过程中起关键作用的膜蛋白种类及其作用机制.结果共鉴定到172个差异膜蛋白.通过差异膜蛋白的COG和GO功能分析,发现荧蒽的加入主要影响了红球菌BAP-1细胞膜上与能量、转运相关的膜蛋白.ABC转运蛋白和TonB依赖转运蛋白作为微生物主要的载体蛋白对BAP-1跨膜运输荧蒽起到了重要作用.过氧化氢酶和超氧化物歧化酶在第6d有一个显著上调,作为抗氧化防御机制来保护微生物.各种膜蛋白在不同阶段发挥着各自作用,这些蛋白共同组成蛋白互作网络调控红球菌BAP-1的跨膜运输过程.
        Comparative proteomics analysis was performed on membrane proteins extracted from Rhodococcus sp. BAP-1on consecutive fluoranthene exposure days by using isobaric tags for relative and absolute quantization(iTRAQ) labelling and LC-MS/MS analysis to access differentially expressed membrane proteins. A total of 172 differential membrane proteins were identified. The enrichment of COG and GO terms analysis of differentially expressed membrane proteins in three clusters showed that most of the differential proteins were involved in transport and oxidation-reduction processes. ABC transporters and TonB-dependent receptors played an important role in transmembrane-transport of fluoranthene. Catalase and superoxide dismutase had a significant up-regulation in sixth days as an antioxidant defence mechanism to protect microbes. Various energy-produced proteins played their respective roles at different stages, and constituted a protein interaction network to regulate transmembrane-transport of microorganisms.
引文
[1]Ogunbayo A,Olanipekun O,Owoade A.Biodegradation of certain polycyclic hydrocarbons with paenbacillus alvei and penicillum restricum[J].Journal of Ecological Engineering,2018,19:140-148
    [2]Luo A,Wu Y R,Xu Y,et al.Characterization Fn of a cytochrome P450monooxygenase capable of high molecular weight PAHs oxidization from Rhodococcus sp.P14[J].Process Biochemistry,2016,51:2127-2133.
    [3]Zhou X,Xing X,Hou J,et al.Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1in response to n-octadecane and n-hexadecane[J].Plos One,2017,12:e0179842.
    [4]Liu S,Guo C,Dang Z,et al.Comparative proteomics reveal the mechanism of Tween 80enhanced phenanthrene biodegradation by Sphingomonas sp.GY2B[J].Ecotoxicology and Environmental Safety,2017,137:256-264.
    [5]李艺,王红旗,吴枭雄,等.红球菌BAP-1对荧蒽的跨膜运输过程[J].中国环境科学,2018,38(4):1441-1448.Li Y,Wang H Q,Wu X X,et al.Study on the trans-membrane transport process of fluoranthene by Rhodococcus sp.BAP-1[J].China Environmental Science,2018,38:1441-1448.
    [6]Zhang D,Zhu L,Li F.Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain[J].Bioresource Technology,2013,142:454-461.
    [7]Dou J,Qin W,Ding A,et al.iTRAQ-based proteomic profiling of a Microbacterium sp.strain during benzo(a)pyrene removal under anaerobic conditions[J].Applied Microbiology and Biotechnology,2017,101:8365-8377.
    [8]Liu H,Sun W B,Liang R B,et al.iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1:A global response to n-octadecane induced stress[J].Journal of Proteomics,2015,123:14-28.
    [9]许洁,王红旗,孔德康.基于iTRAQ技术荧蒽降解菌的比较蛋白质组学分析[J].中国环境科学,2018,38(1):284-292.Xu J,Wang H Q;Kong D K.iTRAQ-based comparative proteomic analysis of a fluoranthene-degrading bacterium[J],China Environmental Science,2018:284-292.
    [10]Li Y,Wang H Q,Hua F,et al.Trans-membrane transport of fluoranthene by Rhodococcus sp.BAP-1and optimization of uptake process[J].Bioresource Technology,2014,155:213-219.
    [11]Subashchandrabose S R,Logeshwaran P,Venkateswarlu K,et al.Pyrene degradation by Chlorella sp.MM3 in liquid medium and soil slurry:Possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation[J].Algal Research,2017,23:223-232.
    [12]Oliva M,Perales J A,Gravato C,et al.Biomarkers responses in muscle of Senegal sole(Solea senegalensis)from a heavy metals and PAHs polluted estuary[J].Marine Pollution Bulletin,2012,64:2097-108.
    [13]Ma Y L,Lu W,Wan L L,et al.Elucidation of fluoranthene degradative characteristics in a newly isolated achromobacter xylosoxidans DN002[J].Applied Biochemistry and Biotechnology,2015,175:1294-1305.
    [14]Kong J,Wang H,Liang L,et al.Phenanthrene degradation by the bacterium Pseudomonas stutzeri JP1 under low oxygen condition[J].International Biodeterioration&Biodegradation,2017,123:121-126.
    [15]Kai T,Jiao N,Liu K,et al.Distribution and Functions of TonB-dependent transporters in marine bacteria and environments:implications for dissolved organic matter utilization[J].Plos One,2012,7:e41204.
    [16]González J M,Fernándezgómez B,Fernàndezguerra A,et al.Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp.MED152(Flavobacteria)[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105:8724-8729.
    [17]Jeong C B,Kim D H,Kang H M,et al.Genome-wide identification of ATP-binding cassette(ABC)transporters and their roles in response to polycyclic aromatic hydrocarbons(PAHs)in the copepod Paracyclopina nana[J].Aquatic Toxicology,2016,183:144-155.
    [18]Zhang M,Wang X,Tao J,et al.PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa[J].Ecotoxicology and Environmental Safety,2018,157:134-142.