阳极压力降对质子交换膜燃料电池性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of anode pressure drop on performance of proton exchange membrane fuel cells
  • 作者:白世杰 ; 刘永峰 ; 裴普成 ; 姚圣卓 ; 金涛涛
  • 英文作者:BAI Shi-jie;LIU Yong-feng;PEI Pu-cheng;YAO Sheng-zhuo;JIN Tao-tao;Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, School of Machine-Electricity and Vehicle Engineering,Beijing University of Civil Engineering and Architecture;State Key Laboratory of Automotive Safety and Energy, Tsinghua University;
  • 关键词:质子交换膜燃料电池 ; 压力降 ; 相对湿度 ; 仿真与试验
  • 英文关键词:PEMFC;;pressure drop;;relative humidity;;simulation and experiment
  • 中文刊名:DYJS
  • 英文刊名:Chinese Journal of Power Sources
  • 机构:北京建筑大学机电与车辆工程学院城市轨道交通车辆服役性能保障北京市重点实验室;清华大学汽车安全与节能国家重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:电源技术
  • 年:2019
  • 期:v.43;No.344
  • 基金:国家重点研发计划(2016YFB0101305);; 国家自然科学基金(21376138,21676158);; 北京市自然科学基金(KZ201510016-019);; 汽车安全与节能国家重点实验室开放基金(KF1825);; 北京建筑大学市属高校基本科研业务费专项资金(X18083);; 国家重点研发计划项目(2017YFB0102705)
  • 语种:中文;
  • 页:DYJS201905024
  • 页数:4
  • CN:05
  • ISSN:12-1126/TM
  • 分类号:73-76
摘要
为了研究阳极压力降对质子交换膜燃料电池性能的影响,提出了一个新的相对湿度-压力降(RHPD)模型。RHPD模型考虑了由阳极含水量变化引起的质子交换膜燃料电池阳极压力降变化的现象。将RHPD模型通过自定义函数导入Fluent中,完成燃料电池在不同工况下的仿真计算。对工作温度为60℃,阴极相对湿度为50%,阳极相对湿度分别为25%,50%,75%下的电池性能进行了测定。通过比较Fluent模型,RHPD模型和试验数据三者发现:相对湿度为25%,电流密度为445 mA/cm~2,RHPD模型和试验值数据间仅存在0.11%误差。
        In order to study the effect of anode pressure drop on the performance of proton exchange membrane fuel cell(PEMFC), a new relative humidity & pressure drop(RHPD) model was proposed. This model took into account the pressure drop of PEMFC caused by the change of anodic water content. The RHPD model was imported into Fluent by user-defined function. The simulation was completed under different working conditions. The performance of the battery was measured when the operating temperature was 60 ℃, the cathode relative humidity was 50% and the anode relative humidity respectively was 25%, 50% and 75%. Compared with Fluent model, RHPD model and the experiment data, it is found that the relative humidity is 25% and the current density is 445 mA/cm~2. There are only 0.11% difference between RHPD model and experiment data.
引文
[1]衣宝廉.燃料电池---原理·技术·应用[M].北京:化学工业出版社,2003:150-234.
    [2]陈士忠,王艺澄,张旭阳,等.四流道蛇形结构质子交换膜燃料电池温度分布数值模拟[J].可再生能源,2016,34(6):921-925.
    [3]高建华,刘永峰,裴普成,等.温度波动对质子交换膜燃料电池的影响[J].可再生能源,2017,35(8):1150-1155.
    [4]PEI P,OUYANG M,FENG W,et al.Hydrogen pressure drop characteristics in a fuel cell stack[J].International Journal of Hydrogen Energy,2006,31(3):371-377.
    [5]PEI P C,SONG M C,ZENG X,et al.Flooding prediction based on characteristics of hydrogen pressure drop in PEMFC[J].Journal of Agricultural Machinery,2014,45:341-346.
    [6]WANG Y,BASU S,WANG C.Modeling two-phrase flow in PEMfuel cell channels[J].Journal of Power Sources,2008,179(2):603-617.
    [7]ZHANG L,BI X T,WILKINSON D P,et al.Gas-liquid two-phrase flow behavior in minichannels bounded with a permeable wall[J].Chemical Engineering Science,2011,66(14SI):3377-3385.
    [8]ITO K,ASHIKAGA K,MASUDA H,et al.Estimation of flooding in PEMFC gas diffusion layer by differential pressure measurement[J].Journal of Power Sources,2008,175(2):732-738.
    [9]STEINER N Y,CANDUSSO D,HISSEL D,et al.Model-based diagnosis for proton exchange membrane fuel cells[J].Mathematics and Computers in Simulation,2010,81(2SI):158-170.
    [10]HEMEIDA A,SUMAIT F.Improving the Lockhart and Martinelli two-phrase flow correlation by SAS[J].Journal of King Saud University-Engineering Sciences,1988,14(2):423-435.
    [11]GRIMM M,SEE E J,KANDLIKAR S G.Modeling gas flow in PEMFC channels:Part I-Flow pattern transitions and pressure drop in a simulated ex situ channel with uniform water injection through the GDL[J].International Journal of Hydrogen Energy,2012,37(17):12489-12503.
    [12]ANDERSON R,EGGLETON E,ZHANG L.Development of twophase flow regime specific pressure drop models for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,2015,40(2):1173-1185.
    [13]JANSSEN G J M,OVERVELDE M L J.Water transport in the proton-exchange-membrane fuel cell:Measurements of the effective drag coefficient[J].J Power Sources,2001;101:117-125.
    [14]BERNING T,KAER S K.Low stoichiometry operation of a protonexchange membrane fuel cell employing the interdigitated fuel cell:A modeling study[J].J Power Sources,2012,37(10):8477-8499.
    [15]BERNING T.The dew point temperature as a criterion for optimizing operating conditions for proton exchange membrane fuel cells[J].Int Journal of Hydrogen Energy,2012,37(13):10265-10275.