柔性表面织构化在海洋装备减阻与防污上的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Textured Surface Flexible Materials in Drag Reduction and Antifouling of Marine Equipment
  • 作者:秦立果 ; 杨浩 ; 董光能 ; 张雅利
  • 英文作者:QIN Li-guo;YANG Hao;DONG Guang-neng;ZHANG Ya-li;Institute of Design Science and Basic Component,Xi'an Jiaotong University;Key Laboratory for Modern Design & Rotary-Bearing System of Ministry of Education,Xi'an Jiaotong University;Key Laboratory of Biomedical Information of Ministry of Education,Xi'an Jiaotong University;
  • 关键词:表面防护 ; 抗生物附着 ; 柔性 ; 织构 ; 减阻
  • 英文关键词:surface protection;;antibiotic attachment;;flexibility;;texture;;drag reduction
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:西安交通大学设计科学与基础部件研究所;西安交通大学现代设计及转子轴承系统教育部重点实验室;西安交通大学生物医学信息教育部重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51605370);; 博士后基金(2016M602802);; 陕西省博士后基金(2017BSHEDZZ122);; 陕西省自然基金(2017JQ5009);; 中央高校基本科研业务费专项(xjj2018245)~~
  • 语种:中文;
  • 页:BMJS201906019
  • 页数:8
  • CN:06
  • ISSN:50-1083/TG
  • 分类号:164-171
摘要
首先详细论述了生物污损的形成过程及原因,总结了生物污损对海洋装备服役的危害,并明确指出船体表面污着生物附着问题已成为阻碍船体表面减阻技术研究的一大难题。众多研究表明,研究表面结构与功能的统一性,实现表面的高效防护与减阻是海洋装备未来发展的必由之路。调控表面的形貌参数和物理化学性能,如润湿性等,以及研发抑制微生物的附着和繁殖,研制合适的防污剂,是当前两种主要研究思路。依据上述思路,基于海豚、鲨鱼柔性皮肤快速游动的减阻原理,考察常见防污涂层(聚氨酯)这种柔性表面,引入织构减阻。考察柔性表面及织构化参数在服役条件下对减阻行为及防污着生物附着的双重调控,有望实现海洋装备在服役工况下的节能降耗。最后展望了结合抗生物附着的细菌及其天然代谢物镶嵌、接枝到海洋装备表面,从而实现驱避和对抗污着生物附着功能的研究方法。
        Marine equipment plays an increasingly important role in marine economic construction and marine defense. The problem of fouling organisms on the surface of water is still a key factor restricting the service life of marine equipment. The work firstly discusses the formation process and causes of biofouling, summarizes the harm of biofouling to marine equipment service, and clearly points out that the problem of fouling on the surface of hull has become a major problem hindering the research of hull surface drag reduction technology. Numerous studies have shown that studying the unity of surface structure and function and achieving effective surface protection and drag reduction are essential for the future development of marine equipment. The current two main research ideas are to regulate the physical and chemical properties of the surface, such as wettability and surface topography and to develop suitable antifouling agents for inhibiting the attachment and propagation of microorganisms. According to the above ideas, based on the principle of drag reduction of dolphins and sharks flexible skin, the flexible surface of common antifouling coating(polyurethane) was investigated, and the drag reduction by texture was introduced. Investigating the dual regulation of flexible surface and texture parameters on drag reduction behavior and anti-fouling bio-adhesion under service conditions is expected to achieve energy saving and consumption reduction of marine equipment under service conditions. At the end, the research methods of combining anti-biofouling bacteria and natural metabolites into the surface of marine equipment to achieve the function of repelling and resisting the adhesion of organisms are proposed.
引文
[1]DOBRETSOV S,RMM A,TEPLITSKI M.Mini-review:Inhibition of biofouling by marine microorganisms[J].Biofouling,2013,29(4):423-441.
    [2]欧阳雄,曹文浩,张慧,等.大型海洋生物抗附着机制及展望[J].海洋科学,2015,39(10):134-140.OUYANG Xiong,CAO Wen-hao,ZHANG Hui,et al.Areview on the anti-fouling strategies of macrobenthos and nekton in the marine environment[J].Marine science,2015,39(10):134-140.
    [3]胡静怡.海洋生物防污作用机制及应用前景[J].科技创新导报,2017(21):114-116.HU Jing-yi.Mechanism and application prospects of marine biological antifouling[J].Science and technology innovation review,2017(21):114-116.
    [4]NURIOGLU A G,ESTEVES A C C.Non-toxic,nonbiocide-release antifouling coatings based on molecular structure design for marine applications[J].Journal of materials chemistry B,2015,3(32):6547-6570.
    [5]KOSTINA N Y,SHARIFI S,ANDRES D L S P,et al.Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA)nanocomposite hydrogels with superiormechanical properties[J].Journal of materials chemistry B,2013,1(41):5644-5650.
    [6]BUSKENS P,WOUTERS M,RENTROP C,et al.A brief review of environmentally benign antifouling and foulrelease coatings for marine applications[J].Journal of coatings technology and research,2013,10(1):29-36.
    [7]许昆明.海洋生物膜的形成及其对金属腐蚀的影响[J].海洋科学,2008,32(9):71-75.XU Kun-ming.Marine biofilm formation and its effect on metal corrosion[J].Ocean science,2008,32(9):71-75.
    [8]刘媛,时甜甜.仿生防污涂层材料在船舶防污上的应用[J].现代涂料与涂装,2013,16(5):29-34.LIU Yuan,SHI Tian-tian.Application of biomimetic antifouling surface coating materials used in preventing ship pollution[J].Modern paint&finishing,2013,16(5):29-34.
    [9]张祝利,王贤瑞.我国渔船用防污漆的应用与监管现状及对策建议[J].渔业现代化,2014,41(3):60-64.ZHANG Zhu-li,WANG Xian-rui.The status and countermeasures for the application and supervision of antifouling coating for fishing vessels in China[J].Fishering modernization,2014,41(3):60-64.
    [10]WANG G,GUO Z,LIU W.Interfacial effects of superhydrophobic plant surfaces:A review[J].Journal of bionic engineering,2014,11(3):325-345.
    [11]SOLGA A,CERMAN Z,STRIFFLER B F,et al.The dream of staying clean:Lotus and biomimetic surfaces[J].Bioinspiration&biomimetics,2007,2(4):126-134.
    [12]张金伟,蔺存国.仿鲨鱼皮减阻防污材料的制备与表征[J].腐蚀与防护,2015,36(s2):77-83.ZHANG Jin-wei,LIN Cun-guo.The preparation and characterization of bionic drag-reduction and antifouling materials inspired by shark skin[J].Corrosion and protection,2015,36(s2):77-83.
    [13]LIU K,JIANG L.Bio-inspired design of multiscale structures for function integration[J].Nano today,2011,6(2):155-175.
    [14]BALL P.Engineering sharkskin and other solutions[J].Nature,1999,400(6744):507-509.
    [15]SINGH A V,RAHMAN A,KUMAR N V G S,et al.Bio-inspired approaches to design smart fabrics[J].Materials&design,2012,36:829-839.
    [16]丛非,高昌录,郭智仁,等.低表面能防污涂料研究进展[J].合成材料老化与应用,2018,47(2):87-90.CONG Fei,GAO Chang-lu,GUO Zhi-ren,et al.Research progress of low surface energy antifouling coatings[J].Aging and application of synthetic materials,2018,47(2):87-90.
    [17]张新生.核壳结构纳米Ag@Si O2的制备及其杀菌?防腐和应用性能研究[D].北京:北京化工大学,2011.ZHANG Xin-sheng.Synthesis of core-shell Ag@Si O2nanoparticles and the studies of its antibacterial,anticorrosion and application properties[D].Beijing:Beijing University of Chemical Technology,2011.
    [18]张淑玉.表面植绒型海洋防污材料的制备工艺及应用性能研究[D].青岛:中国海洋大学,2013.ZHANG Shu-yu.Study on preparation tech and porperties of surface flocking materials for marine antifouling application[D].Qingdao:Ocean University of China,2013.
    [19]LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:A nontoxic alternative to biocidal antifouling coatings[J].Chemical reviews,2012,8(8):4347-4390.
    [20]MOHAMED S S,SHERIF A E S,MAHER A E S,et al.Smart photo-induced silicone/TiO2 nanocompositeswith dominant exposed surfaces for self-cleaning foul-release coatings of ship hulls[J].Materials and design,2016,101:218-225.
    [21]于欢.石墨烯/TiO2复合材料改性水性聚氨酯防污涂层研究[D].大连:大连海事大学,2013.YU Huan.Study on preparation and performance of grapheme/TiO2 modified water borne polyurethane composite coatings[D].Dalian:Dalian Maritime University,2013.
    [22]丁树丹,顾彩香,于阳,等.船舶防污涂料的研究进展[J].中国水运,2011,11(6):22-45.DING Shu-dan,GU Cai-xiang,YU Yang,et al.Research progress of marine antifouling coatings[J].China water transport,2011,11(6):22-45.
    [23]李善文.呋喃改性硅丙树脂,纳米TiO2低表面能船舶防污涂料[D].大连:大连交通大学,2008.LI Shan-wen.Antifouling paint of furan modified organosilieon-aerylate/nano-TiO2 on vessels[D].Dalian:Dalian Jiaotong University,2008.
    [24]马英华,宋振伟,何遥,等.低表面能防污涂料防污机理探讨[J].上海涂料,2013,51(5):15-17.MA Ying-hua,SONG Zhen-wei,HE Yao,et al.Discussing about antifouling mechanism of antifouling coatings with low surface energy[J].Shanghai coatings,201351(5):15-17.
    [25]BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.
    [26]ANITHA C,SYED A S,MAYAVAN S.Fluorine free superhydrophobic surface textured silica particles and its dynamics transition from impalement to impingement[J].Journal of alloys and compounds,2017,711:197-204.
    [27]SELIM M S,SHENASHEN M A,SHERIF A E S,et al.Recent progress in marine foul-release polymeric nanocomposite coatings[J].Progress in materials science,2017,87:1-32.
    [28]BENSCHOP H O G,GUERIN A J,BRINKMANN A,et al.Drag-reducing riblets with fouling-release properties:development and testing[J].Biofouling,2018,34(5):532-544.
    [29]BUSKENS P,WOUTERS M,RENTROP C,et al.A brief review of environmentally benign antifouling and foulrelease coatings for marine applications[J].Journal of coatings technology and research,2013,10(1):29-36.
    [30]DONG Wei-wang,XIA Wu,LI Xia-long,et al.Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers[J].Biofouling,2017,33(10):970-979.
    [31]BALL P.Engineering sharkskin and other solutions[J].Nature,1999,400(6744):507-509.
    [32]曹文浩,严涛,刘永宏,等.美丽海绵提取物防污损作用[J].生态学报,2012,32(13):4285-4290.CAO Wen-hao,YAN Tao,LIU Yong-hong,et al.The antifouling activities of callyspongia sponge extracts[J].Acta ecologica sinica,2012,32(13):4285-4290.
    [33]ZHAO Huai-xia,SUN Qiang-qiang,XU Deng,et al.Earthworm-inspired rough polymer coatings with selfreplenishing lubrication for adaptive friction-reduction and antifouling surfaces[J].Advanced materials,2018,30(29):71-75.
    [34]CáTIA V B,EMíLIA S,MADALENA P,et al.An antifouling model from the sea:A review of 25 years of zosteric acid studies[J].Biofouling,2017,33(10):927-942.
    [35]罗爱梅,蔺存国,王利,等.鲨鱼表皮的微观形貌观察及其防污能力评价[J].海洋科学,2009,28(6):715-718.LUO Ai-mei,LIN Cun-guo,WANG Li,et al.Micromorphology observation of shark skins and evaluation of antifouling ability[J].Marine science,2009,28(6):715-718.
    [36]ALMEIDA J R,FREITAS M,CRUZ S,et al.Acetylcholinesterase in biofouling species:characterization and mode of action of cyanobacteria-derived antifouling agents[J].Toxins,2015,7(8):2739-2756.
    [37]KHARCHENKO U,BELENEVA I,DMITRIEVA E.Antifouling potential of a marine strain,Pseudomonas aeruginosa 1242,isolated from brass microfouling in Vietnam[J].International biodeterioration&biodegradation,2012,75:68-74.
    [38]YANG W J,CAI T,NEOH K G,et al.Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel[J].Langmuir,2011,27(11):7065-7076.
    [39]XU L Q,PRANANTYO D,LIU J B,et al.Layer-by-layer deposition of antifouling coatings on stainless steel via catechol-amine reaction[J].RSC advances,2014,4(61):32335-32344.
    [40]LEE H,RHO J,MESSERSMITH P B.Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings[J].Advanced materials,2009,21(4):431-434.
    [41]莫梦婷,赵文杰,陈子飞,等.海洋减阻技术的研究现状[J].摩擦学学报,2015,35(4):505-512.MO Meng-ting,ZHAO Wen-jie,CHEN Zi-fei,et al.Research status of marine drag reduction technologies[J].Tribology,2015,35(4):505-512.
    [42]MIN Shao-song,PENG Fei,WANG Zhan-zhi.Method of estimating the effect of marine fouling on frictional resistance of ships[J].Journal of ship mechanics,2017,21(12):1460-1467.
    [43]WEN L,WEAVER J C,THORNYCROFT P J M,et al.Hydrodynamic function of biomimetic sharkskin:Effect of denticle pattern and spacing[J].Bioinspiration&biomimetics,2015,10(6):066010.
    [44]王家楣,曹春燕.船舶微气泡减阻数值试验研究[J].船海工程,2005(2):21-23.WANG Jia-mei,CAO Chun-yan.Numerical simulation on drag reduction of a vessel by microbubbles[J].Ship ocean engineering,2005(2):21-23.
    [45]JIN J W.Reviews and prospects in turbulent drag reduction over riblets surface[J].Journal of Beijing University of Aeronautics and Astronautics,1998,24(1):31-34.
    [46]CHEN Ping,LI Jun-ling,LI Yun-long.Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J].Journal of Central South University,2018,25(2):331-341.
    [47]CHEN Ping,XIANG Xin,SHAO Tian-min,et al.Effect of triangular texture on the tribological performance of die steel with TiN coatings under lubricated sliding condition[J].Applied surface science,2016,389:361-368.
    [48]ZHAO D Y,HUANG Z P,WANG M J,et al.Vacuum casting replication of micro-riblets on sharkskin for drag-reducing applications[J].Journal of materials processing technology,2012,212(1):198-202.
    [49]GREGORY D B,BHARAT B.Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces[J].Nanoscale,2013,17(17):7685-7710.
    [50]田丽梅,可庆朋,金娥,等.形态/材料耦合仿生功能表面减阻特性及机制[J].农业工程学报,2015,31(13):10-16.TIAN Li-mei,KE Qing-peng,JIN E,et al.Drag reduction characteristics and mechanism of bionic coupling functional surface caused by bionic form and elastic material[J].Transactions of the Chinese society of agricultural engineering,2015,31(13):10-16.
    [51]LUO Y H,YUAN L,LI J H,et al.Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications[J].Micron,2015,79:59-73.
    [52]POLLACK K A,IMBESI P M,RAYMOND J E,et a1.Hyper-branched fluoropolymer-polydimethylsiloxane-poly(ethylene glycol)cross-linked terpolymer networks designed for marine and biomedical applications:heterogeneous nontoxic anti biofouling surfaces[J].Acsapplied materials&interfaces,2014,6(21):19265-19274.
    [53]LIU Yi-bin,GU Hui-min,JIA Y U,et al.Marine biofilm formation and its effect on metal corrosion[J].Chemical engineering journal,2008,32(9):71-75.
    [54]YU W U,SHEN Yi-zhou,TAO Jie,et al.Facile spraying fabrication of highly flexible and mechanically robust super hydrophobic F-SiO2@PDMS coatings for self-cleaning and drag-reduction applications[J].New journal of chemistry,2018,42:18208-18216.
    [55]LIU H,HUANG J,CHEN Z,et al.Robust translucent super hydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J].The chemical engineering journal,2017,330:26-35.
    [56]张岩.聚氨酯防污涂层的海水环境响应特性研究[D].大连:大连海事大学,2016.ZHANG Yan.Investigation on the response characteristics in marine environment of polyurethane antifouling coatings[D].Dalian:Dalian Maritime University,2016.
    [57]郝路亭.基于双向流固耦合的柔性表面仿生减阻研究[D].大连:大连理工大学,2018.HAO Lu-ting.Research on bionic drag reduction of flexible surface based on bidirectional fluid-solid coupling[D].Dalian:Dalian University of Technology,2018.