基于DDQ线圈的双耦合LCL拓扑IPT系统及其抗偏移方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Dual Coupled LCL Topology IPT System Based on DDQ Coils and Its Anti-misalignment Method
  • 作者:任洁 ; 周坤卓 ; 李宏超 ; 刘野然 ; 麦瑞坤
  • 英文作者:REN Jie;ZHOU Kunzhuo;LI Hongchao;LIU Yeran;MAI Ruikun;School of Electrical Engineering, Southwest Jiaotong University;
  • 关键词:LCL拓扑 ; 感应电能传输 ; 功率分配 ; 效率提升 ; 抗偏移
  • 英文关键词:LCL topology;;inductive power transfer(IPT);;power allocation;;efficiency optimization;;anti-misalignment
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:西南交通大学电气工程学院;
  • 出版日期:2018-03-19 17:18
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.620
  • 基金:国家自然科学基金项目(51677155);; 四川省青年科技基金项目(2016JQ0033);; 中央高校基本科研业务费专项资金(2682017QY01)~~
  • 语种:中文;
  • 页:ZGDC201909028
  • 页数:11
  • CN:09
  • ISSN:11-2107/TM
  • 分类号:293-303
摘要
基于传统LCL补偿拓扑IPT电路,该文将LCL拓扑中用于补偿的电感替换为一对耦合线圈,既可保证电路谐振,线圈间互感又为系统提供了一个新的能量传输通道,即一种双耦合LCL拓扑IPT系统。首先介绍了DDQ线圈结构与双耦合LCL拓扑电路的特点;理论结果表明,与传统单耦合LCL拓扑IPT系统的传输效率相比,所提出的双耦合LCL系统效率提升了0.8%。此外,该文还提出了一种将LCL拓扑切换为SS补偿拓扑的方法,有效提高系统在偏移时的功率输出能力。最后,通过实验验证了该系统的有效性与抗偏移能力:正对时两对耦合线圈传输功率分别为233W和392W,效率达95.5%;在偏移0~17cm范围内,输出功率始终高于500W,传输效率始终高于88.7%。
        A dual coupled LCL(DCLCL) based IPT system was proposed in this paper by replacing the resonant inductor with a pair of coupled coils on the basis of traditional LCL topology IPT system for the purpose of keeping circuit resonant and providing another power transmission channel.Firstly, the characteristics of DDQ coil's structure and DCLCL circuit were analyzed. In addition, the efficiency of the system is 0.8% higher than that of the traditional single coupled LCL(SCLCL) based IPT system. Besides, a method of switching compensation topologies from LCL to SS was proposed to improve output power against misalignment. The anti-misalignment performance of the proposed IPT system were verified by experiments showing that the transmission powers of the two coupled coils are 230 W and 395 W respectively at 95.5% system efficiency. The output power is always greater than 500 W with the efficiency higher than88.7% when the coil misalignment ranges from 0 to 17 cm.
引文
[1]李勇,麦瑞坤,马林森,等.一种双初级线圈并绕的感应电能传输系统及其功率分配方法[J].中国电机工程学报,2015,35(17):4454-4460.Li Yong,Mai Ruikun,Ma Linsen,et al.Dual parallel wound primary coils based IPT systems and its power allocation technique[J].Proceedings of the CSEE,2015,35(17):4454-4460(in Chinese).
    [2]程志远,宋凯,魏国,等.感应电能传输系统死区开关特性的研究[J].中国电机工程学报,2014,34(21):3561-3568.Cheng Zhiyuan,Song Kai,Wei Guo,et al.Research on dead zone switching characteristics in IPT systems[J].Proceedings of the CSEE,2014,34(21):3561-3568(in Chinese).
    [3]麦瑞坤,马林森.基于双拾取线圈的感应电能传输系统研究[J].中国电机工程学报,2016,36(19):5192-5199.Mai Ruikun,Ma Linsen.Research on inductive power transfer systems with dual pick-up coils[J].Proceedings of the CSEE,2016,36(19):5192-5199(in Chinese).
    [4]夏晨阳,庄裕海,邵祥等.新型多负载变拓扑感应耦合电能传输系统[J].中国电机工程学报,2015,35(4):953-960.Xia Chenyang,Zhuang Yuhai,Shao Xiang,et al.A novel inductively coupled power transfer system for multi-load with variable topology[J].Proceedings of the CSEE,2015,35(4):953-960(in Chinese).
    [5]赵争鸣,张艺明,陈凯楠.磁耦合谐振式无线电能传输技术新进展[J].中国电机工程学报,2013,33(3):1-13.Zhao Zhengming,Zhang Yiming,Chen Kainan.New progress of magnetically-coupled resonant wireless power transfer technology[J].Proceedings of the CSEE,2013,33(3):1-13(in Chinese).
    [6]Choi B,Nho J,Cha H,et al.Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J].IEEE Transactions on Industrial Electronics,2004,51(1):140-147.
    [7]Park C,Lee S,Jeong S Y,et al.Uniform power I-type inductive power transfer system with DQ-power supply rails for on-line electric vehicles[J].IEEE Transactions on Power Electronics,2015,30(11):6446-6455.
    [8]Shin J,Shin S,Kim Y,et al.Design and implementation of shaped magnetic resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J].IEEE Transactions on Industrial Electronics,2014,61(3):1179-1192.
    [9]Huh J,Lee S,Park C,et al.High performance inductive power transfer system with narrow rail width for on-line electric vehicles[C]//Energy Conversion Congress and Exposition(ECCE).Allanta,USA:IEEE,2010:647-651.
    [10]麦瑞坤,刘野然,陈阳.基于最优等效负载控制的感应电能传输系统效率优化方法研究[J].中国电机工程学报,2016,36(23):6468-6475.Mai Ruikun,Liu Yeran,Chen Yang,et al.Study of efficiency optimization method based on optimal equivalent load control in IPT systems[J].Proceedings of the CSEE,2016,36(23):6468-6475(in Chinese).
    [11]Zhang W,Wong S C,Chi K T,et al.Design for efficiency optimization and voltage controllability of series:series compensated inductive power transfer systems[J].IEEETransactions on Power Electronics,2014,29(1):191-200.
    [12]夏晨阳,解光庆,林克章,等.双LCL补偿ICPT系统双谐振点特性与最大输出功率研究[J].中国电机工程学报,2016,36(19):5200-5208.Xia Chenyang,Xie Guangqing,Lin Kezhang,et al.Study of dual resonance point characteristics and maximum output power of ICPT based on double LCLcompensation[J].Proceedings of the CSEE,2016,36(19):5200-5208(in Chinese).
    [13]Lu F,Zhang H,Hofmann H,et al.A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging[J].IEEE Transactions on Power Electronics,2015,30(11):6011-6014.
    [14]Lu F,Zhang H,Hofmann H,et al.An inductive and capacitive combined wireless power transfer system with LC-compensated topology[J].IEEE Transactions on Power Electronics,2016,31(12):8471-8482.
    [15]Deng J,Li W,Li S,et al.Magnetic integration of LCCcompensated resonant converter for inductive power transfer applications[C]//Energy Conversion Congress and Exposition(ECCE).Pittsburgh,USA:IEEE,2014:660-667.
    [16]Lu F,Zhang H,Hofmann H,et al.A dual-coupled LCC-compensated IPT system to improve misalignment performance[C]//2017 IEEE PELS Workshop on Emerging Technologies:Wireless Power Transfer.Chongqing,China:IEEE,2017:1-8.
    [17]Budhia M,Boys J T,Covic G A,et al.Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J].IEEE Transactions on Industrial Electronics,2013,60(1):318-328.
    [18]Deng J,Li W,Nguyen T D,et al.Compact and efficient bipolar coupler for wireless power chargers:design and analysis[J].IEEE Transactions on Power Electronics,2015,30(11):6130-6140.
    [19]Li W,Zhao H,Li S,et al.Integrated LCC compensation topology for wireless charger in electric and plug-in electric vehicles[J].IEEE Transactions on Industrial Electronics,2015,62(7):4215-4225.
    [20]Lu F,Zhang H,Hofmann H,et al.A dynamic charging system with reduced output power pulsation for electric vehicles[J].IEEE Transactions on Industrial Electronics,2016,63(10):6580-6590.
    [21]麦瑞坤,林天仁,李勇,等.双发射线圈的感应电能传输系统的小信号建模及控制研究[J].中国电机工程学报,2017,37(20):6068-6076.Mai Ruikun,Lin Tianren,Li Yong,et al.Study on Small Signal Modeling and Controlling for Dual Transmitters Based IPT System[J].Proceedings of the CSEE,2017,37(20):6068-6076(in Chinese).
    [22]Zaheer A,Hao H,Covic G A,et al.Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging[J].IEEE Transactions on Power Electronics,2015,30(4):1937-1955.
    [23]Li Yong,Lin Tianren,Mai Ruikun,et al.Compact double-sided decoupled coils based WPT systems for high power applications:analysis,design and experimental verification[J].IEEE Transactions on Transportation Electrification,2018,4(1):64-75.