华南矿区与非矿区土壤酸化特征及铝形态分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Acidification characteristics and aluminum speciation in soil from mining and non-mining areas of Southern China
  • 作者:吴家龙 ; 郭彦彪 ; 张池 ; 邓婷 ; 王皓宇 ; 杨淇钧 ; 刘青 ; 周波 ; 任宗玲 ; 戴军
  • 英文作者:WU Jialong;GUO Yanbiao;ZHANG Chi;DENG Ting;WANG Haoyu;YANG Qijun;LIU Qing;ZHOU Bo;REN Zongling;DAI Jun;College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture P.R.China/Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation/Guangdong Province Key Laboratory of Land Use and Consolidation;Guangzhou Experimental Station, Chinese Academy of Tropical Agricultural Sciences;Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation and Utilization;
  • 关键词:土壤酸化 ; 铝形态 ; 矿区 ; 相关分析 ; 主成分分析
  • 英文关键词:soil acidification;;aluminum form;;mining area;;correlation analysis;;principal component analysis
  • 中文刊名:HNNB
  • 英文刊名:Journal of South China Agricultural University
  • 机构:华南农业大学资源环境学院/农业部耕地保育重点实验室/国土资源部建设用地再开发重点实验室/广东省土地利用与整治重点实验室;中国热带农业科学院广州试验站;广东省农业科学院茶业科学研究所/广东省茶树资源创新利用重点实验室;
  • 出版日期:2019-01-30 09:10
  • 出版单位:华南农业大学学报
  • 年:2019
  • 期:v.40
  • 基金:广东省自然科学基金(2015A030313404);; 国家自然科学基金(41601227,41201305);; 国家重点研发计划重点专项(2016YFD0201301,2016YFD0201200,2016YFD0800300);; 广东省水利科技创新项目(2014-18);; 华南农业大学资源环境学院院长基金(ZHXY2017A02)
  • 语种:中文;
  • 页:HNNB201902005
  • 页数:10
  • CN:02
  • ISSN:44-1110/S
  • 分类号:27-36
摘要
【目的】通过对华南矿区和非矿区土壤样品的酸化特征及铝形态进行对比分析,为华南地区土壤酸化研究及改良提供理论依据。【方法】以华南地区31个土壤样品为研究对象,测定了土壤pH、有机质、交换性酸、黏粒含量和阳离子交换量(CEC),通过连续浸提法测定了土壤铝形态,采用相关分析和主成分分析法研究了矿区和非矿区土壤中铝的形态分布。【结果】矿区土壤的交换性氢(Ex-H)(2.75 cmol·kg~(-1))显著高于非矿区土壤(0.97 cmol·kg~(-1));矿区土壤的pH(H_2O)(3.44)、CEC(b=6.43 cmol·kg~(-1))、黏粒(w=13.05%)、弱有机结合态铝(Al Orw)(b=3.44 mmol·kg~(-1))和有机结合态铝(Al Or)(b=12.96 mmol·kg~(-1))的含量均分别显著低于非矿区土壤(4.39,12.70 cmol·kg–1,28.64%,8.32和41.46 mmol·kg–1)。相关分析结果显示:矿区和非矿区土壤的交换态铝(Al Ex)与pH(H_2O)均呈显著负相关(r=-0.577**和-0.671**);矿区和非矿区土壤Al Ex与交换性酸总量(r=0.927**和0.662**)、交换性氢(r=0.976**和0.555*)及交换性铝(r=0.870**和0.632**)分别呈正相关。主成分分析结果显示:矿区和非矿区土壤的综合酸化特征差异显著,按pH<3.50、3.50≤pH<4.50、4.50≤pH<5.50和pH≥5.50划分的土壤综合特征也有显著性差异。【结论】矿区土壤的酸性更强,有机结合态铝含量较低,而非矿区土壤具有较高的pH(H_2O)、CEC和黏粒含量,矿区和非矿区土壤酸化特征不同,且不同pH梯度土壤的酸化特征也不同。因此,在矿区土壤酸化改良中,pH和有机质的提升尤为必要。
        【Objective】To perform comparative analysis of acidification characteristics and aluminum speciation of soil samples collected from mining and non-mining areas in Southern China, and provide a theoretical basis for the remediation of soil acidification in Southern China. 【Method】Soil pH, organic matter content, exchangeable acid content, clay contents and cation exchange capacity(CEC) of 31 soil samples in Southern China were measured, and aluminum forms were examined by sequential extraction method. The correlation analysis and principal component analysis were applied to study the distribution of different aluminum species in soil of mining and non-mining areas. 【Result】The contents of exchangeable hydrogen(Ex-H)(2.75 cmol·kg~(-1)) in mining soil were significantly higher than those in non-mining soil(0.97 cmol·kg~(-1)).The mining soil had significantly lower pH(H_2O)(3.44), CEC(6.34 cmol·kg~(-1)), clay content(13.05%), weakly organically bound aluminum(Al Orw)(3.44 mmol·kg~(-1)) and organically bound aluminum(Al Or)(12.96 mmol·kg~(-1)) contents than those in non-mining soil(4.39, 12.70 cmol·kg–1, 28.64%, 8.32 and 41.46 mmol·kg–1),respectively. For both mining and non-mining soil, the correlation analysis showed that exchangeable aluminum(Al Ex) content had significantly negative correlation with pH(H_2O)(r=–0.577** and –0.671**), and Al Ex content had significantly positive correlation with exchangeable acid quantum(Ex-Q)(r=0.927** and 0.662**), Ex-H(r=0.976** and 0.555*) and exchangeable aluminum(Ex-Al) contents(r=0.870** and 0.632**), respectively.The principal component analysis(PCA) showed that there were significant differences in soil acidification characteristics between mining and non-mining areas, and there were significant differences in the comprehensive characteristics of soil with different pH levels(pH<3.50, 3.50≤pH<4.50, 4.50≤pH<5.50 and pH≥5.50). 【Conclusion】Compared with non-mining soils, mining soils have stronger acidity and lower content of organically bound aluminum. Non-mining soils have higher pH(H_2O), CEC and clay contents. The acidification characteristics of mining and non-mining soil are significantly different, and the acidification characteristics of soil with different pH gradients are also significantly different. Therefore, it is particularly necessary to improve soil pH and organic matter content in the remediation process of acidified soil of mining area.
引文
[1]KOCHIAN L V,PINEROS M A,LIU J P,et al.Plant adaptation to acid soils:The molecular basis for crop aluminum resistance[J].Annu Rev Plant Biol,2015,66(66):571-598.
    [2]许小丽,张金彪.森林土壤-植物系统铝毒害及防治研究进展[J].生态学杂志,2017,36(4):1106-1116.
    [3]徐仁扣.酸化红壤的修复原理与技术[M].北京:科学出版社,2012:1-4.
    [4]徐仁扣.土壤酸化及其调控研究进展[J].土壤,2015,47(2):238-244.
    [5]ZHAO Y,DUAN L,XING J,et al.Soil acidification in China:Is controlling SO2 emissions enough?[J].Environ Sci Technol,2009,43(21):8021-8026.
    [6]GUO J H,LIU X J,ZHANG J L,et al.Significant acidification in major Chinese croplands[J].Science,2010,327(5968):1008-1010.
    [7]LU W Z,MA Y Q,LIN C X.Status of aluminum in environmental compartments contaminated by acidic mine water[J].J Hazard Mater,2011,189(3):700-709.
    [8]BRADY N.The natural and properties of soils[M].9th ed.New York:Macmillan,1984.
    [9]TAM N,WONG Y S,WONG M H.Effects of acidity onacute toxicity of aluminum-waste and aluminum-contaminated soil[J].Hydrobiologia,1989,188/189(1):385-395.
    [10]傅柳松,吴杰民,杨影,等.模拟酸雨对土壤活性铝释出影响研究[J].环境科学,1993,14(1):20-24.
    [11]王维君.我国南方一些酸性土壤铝存在形态的初步研究[J].热带亚热带土壤科学,1995,4(1):1-8.
    [12]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:107-178.
    [13]邵宗臣,何群,王维君.红壤中铝的形态[J].土壤学报,1998,35(1):38-48.
    [14]KUBOVáJ,MATú?P,BUJDO?,et al.Influence of acid mining activity on release of aluminum to the environment[J].Anal Chim Acta,2005,547(1):119-125.
    [15]LARSSEN T,SEIP H M,SEMBB A,et al.Acid deposition and its effects in China:An overview[J].Environ Sci Policy,1999,2(1):9-24.
    [16]HODSON M E,DONNER E.Managing adverse soil chemical environments[M]//GREGORY P J,NORT-CLIFF S.Soil Conditions and Plant Growth.Chichester:Blackwell,2013:195-237.
    [17]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002:194.
    [18]沈仁芳.铝在土壤-植物中的行为及植物的适应机制[M].北京:科学出版社,2008:75-79.
    [19]孔晓玲,季国亮.我国南方土壤的酸度与交换性氢铝的关系[J].土壤通报,1992,23(5):203-204.
    [20]郭彦彪,冯宏,周波,等.广东大宝山矿区废石场土壤酸化特征分析[J].水土保持学报,2013,27(6):46-50.
    [21]王小兵,骆永明,李振高,等.长期定位施肥对亚热带丘陵地区红壤旱地质量的影响[J].土壤学报,2011,48(1):98-102.
    [22]索龙,潘凤娥,胡俊鹏,等.秸秆及生物质炭对砖红壤酸度及交换性能的影响[J].土壤,2015,47(6):1157-1162.
    [23]王维君,陈家坊,何群.酸性土壤交换性铝形态的研究[J].科学通报,1991,36(6):460-463.
    [24]PARKER D R,KINRAIDE T B,ZELAZNY L W.On the phytotoxicity of polynuclear hydroxy-aluminum complexes[J].Soil Sci Soc Am J,1989,53(3):789-796.
    [25]KINRAIDE T B.Identity of the rhizotoxic aluminum species[J].Plant Soil,1991,134(1):167-178.
    [26]许海波,赵道远,秦超,等.水稻土团聚体Cu2+吸附过程中铝的溶出及土壤溶液pH变化[J].环境科学,2014,35(1):248-253.
    [27]王娅娅,杨艳芳,李云飞,等.不同退耕年限下菜子湖湿地土壤活性铝形态特征[J].长江流域资源与环境,2016,25(2):307-315.
    [28]黄洐初,曲长菱.土壤中铝的溶出及形态研究[J].环境科学,1996,17(1):57-59.
    [29]刘敬勇,赵永久.硫铁矿资源开采利用过程中的环境污染问题及控制对策[J].中国矿业,2007,16(7):55-57.
    [30]束文圣,蓝崇钰.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    [31]秦樊鑫,魏朝富,黄先飞,等.黔西北茶园土壤活性铝的形态分布及影响因素[J].环境科学研究,2015,28(6):943-950.
    [32]律兆松,徐琪.中国白浆土研究[J].土壤学报,1995,32(1):32-40.