变风速下双馈感应发电机非线性鲁棒状态估计反馈控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nonlinear Robust State Estimation Feedback Control of Doubly-fed Induction Generator Under Variable Wind Speeds
  • 作者:杨博 ; 束洪春 ; 邱大林 ; 朱德娜 ; 韩一鸣 ; 余涛
  • 英文作者:YANG Bo;SHU Hongchun;QIU Dalin;ZHU Dena;HAN Yiming;YU Tao;Faculty of Electric Power Engineering,Kunming University of Science and Technology;School of Electric Power,South China University of Technology;
  • 关键词:双馈感应发电机 ; 最大功率点跟踪 ; 状态估计反馈控制 ; 硬件在环实验
  • 英文关键词:doubly-fed induction generator(DFIG);;maximum power point tracking(MPPT);;state estimation feedback control;;hardware-in-the-loop test
  • 中文刊名:DLXT
  • 英文刊名:Automation of Electric Power Systems
  • 机构:昆明理工大学电力工程学院;华南理工大学电力学院;
  • 出版日期:2018-12-20 18:19
  • 出版单位:电力系统自动化
  • 年:2019
  • 期:v.43;No.650
  • 基金:国家自然科学基金资助项目(51777078)~~
  • 语种:中文;
  • 页:DLXT201904008
  • 页数:17
  • CN:04
  • ISSN:32-1180/TP
  • 分类号:83-99
摘要
风速的强随机性与风力发电机建模的不确定性给风力发电系统的优化运行带来了极大的挑战。文中设计了一种新型非线性鲁棒状态估计反馈控制(NRSEFC),从而实现双馈感应发电机的最大功率点跟踪。首先,将风轮机的非线性、发电机参数不确定性以及随机风速的综合影响聚合为一个扰动,同时应用一个滑动模态状态扰动观测器对该扰动进行实时快速估计。随后,将该扰动估计值作为附加控制分量加入状态估计反馈控制中进行在线完全补偿。NRSEFC兼具状态反馈线性控制的结构简单、可靠性高以及非线性鲁棒控制的控制全局一致性和鲁棒性强等双方优点,不依赖于双馈感应发电机系统精确模型且仅需测量转子角速度和无功功率两个状态量。基于阶跃风速、随机风速、发电机参数测量误差以及机端电压跌落4个算例的仿真结果验证了NRSEFC的有效性和鲁棒性。最后,基于dSpace的硬件在环实验验证了所提算法的实际应用性能。
        The high randomness of wind speed and the uncertainties of wind generator modelling have posed great challenges to the optimal operation of wind power generation systems.This paper designs a new nonlinear robust state estimation feedback control(NRSEFC)of doubly-fed induction generator(DFIG)for maximum power point tracking(MPPT).Firstly,the combined effect of wind turbine nonlinearities,generator parameter uncertainties,and wind speed randomness is aggregated into a perturbation,which is then rapidly estimated in real-time by a sliding-mode state and perturbation observer(SMSPO).Furthermore,the perturbation estimation value is fully compensated online as a supplementary control component by a state estimation feedback controller.NRSEFC has the advantages of simple structure,high reliability of linear feedback control,as well as global control consistency and significant robustness of nonlinear robust control,while it does not require an accurate DFIG model and only need the state variables of rotor speed and reactive power.Four case studies,including step change of wind speed,random wind speed,generator parameter measurement error and voltage drop are carried out.Simulation results verify the effectiveness and robustness of the proposed approach.Finally,a dSpace based hardware-in-the-loop(HIL)test validates the application feasibility of the proposed approach.
引文
[1]舒印彪,薛禹胜,蔡斌,等.关于能源转型分析的评述:(二)不确定性及其应对[J].电力系统自动化,2018,42(10):1-12.DOI:10.7500/AEPS20180417008.SHU Yinbiao,XUE Yusheng,CAI Bin,et al.A review of energy transition analysis:Part twouncertainties and approaches[J].Automation of Electric Power Systems,2018,42(10):1-12.DOI:10.7500/AEPS20180417008.
    [2]李鹏,信鹏飞,窦鹏冲,等.计及光伏发电最大功率跟踪的光储微电网功率协调控制方法[J].电力系统自动化,2014,38(4):8-13.DOI:10.7500/AEPS20130813010.LI Peng, XIN Pengfei, DOU Pengchong, et al.Power coordinated control of photovoltaic/energy-storage system in microgrid under photovoltaic maximum power point tracking condition[J].Automation of Electric Power Systems,2014,38(4):8-13.DOI:10.7500/AEPS20130813010.
    [3]刘淳,张兴,周宏林,等.含无刷DFIG的风电系统低电压穿越极限控制能力分析[J].电力系统自动化,2016,40(17):122-128.DOI:10.7500/AEPS20150922010.LIU Chun,ZHANG Xing,ZHOU Honglin,et al.Analysis of low voltage ride through control limit of wind energy conversion system based on brushless DFIG[J].Automation of Electric Power Systems,2016,40(17):122-128.DOI:10.7500/AEPS20150922010.
    [4]LI Shuhui,HASKEW T A,WILLIAMS K A,et al.Control of DFIG windturbinewithdirect-currentvectorcontrol configuration[J].IEEE Transactions on Sustainable Energy,2012,3(1):1-11.
    [5]YANG Bo,ZHANG Xiaoshun,YU Tao,et al.Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine[J].Energy Conversion and Management,2017,133:427-443.
    [6]GUO Lei, MENG Zhuo, SUN Yize, et al.Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm[J].Energy Conversion and Management,2016,108:520-528.
    [7]韩鹏,李银红,何璇,等.结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J].电力系统自动化,2016,40(23):101-108.DOI:10.7500/AEPS20160304010.HAN Peng,LI Yinhong,HE Xuan,et al.Improved maximum power point tracking method for photovoltaic multi-peak based on quantum-behaved particle swarm optimization algorithm[J].Automation of Electric Power Systems, 2016, 40(23):101-108.DOI:10.7500/AEPS20160304010.
    [8]YANG Bo,YU Tao,SHU Hongchun,et al.Democratic joint operations algorithm for optimal power extraction of PMSG based wind energy conversion system[J].Energy Conversion and Management,2018,159:312-326.
    [9]YANG Bo,JIANG Lin,WANG Lei,et al.Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine[J].International Journal of Electrical Power and Energy Systems,2016,74:429-436.
    [10]ERROUISSI R,AL-DURRA A, MUYEEN S M,et al.Offset-free direct power control of DFIG under continuousTime model predictive control[J].IEEE Transactions on Power Electronics,2017,32(3):2265-2277.
    [11]EBRAHIMKHANI S.Robust fractional order sliding mode control of doubly-fed induction generator(DFIG)-based wind turbines[J].ISA Transactions,2016,63:343-354.
    [12]GAO Shihong, MAO Chengxiong, WANG Dan,et al.Dynamic performance improvement of DFIG-based WT using NADRC current regulators[J].International Journal of Electrical Power and Energy Systems,2016,82:363-372.
    [13]邱爱中.双馈感应电机的自适应终端滑模控制研究[J].电气传动,2017,47(4):11-15.QIU Aizhong.Adaptive terminal sliding mode control for doubly fed induction generator drive[J].Electric Drive,2017,47(4):11-15.
    [14]MAURICIO J M,LEN A E,GMEZ-EXPSITO A,et al.An adaptive nonlinear controller for DFIM-based wind energy conversion systems[J].IEEE Transactions on Energy Conversion,2008,23(4):1025-1035.
    [15]GUO Wentao,LIU Feng,SI J,et al.Approximate dynamic programming based supplementary reactive power control for DFIG wind farm to enhance power system stability[J].Neurocomputing,2015,170:417-427.
    [16]BOSSOUFI B,KARIM M,LAGRIOUI A,et al.Observer backstepping control of DFIG-generators for wind turbines variable-speed:FPGA-based implementation[J].Renewable Energy,2015,81:903-917.
    [17]殷明慧,蒯狄正,李群,等.风机最大功率点跟踪的失效现象[J].中国电机工程学报,2011,31(18):40-47.YIN Minghui,KUAI Dizheng,LI Qun,et al.A phenomenon of maximum power point tracking invalidity of wind turbines[J].Proceedings of the CSEE,2011,31(18):40-47.
    [18]MEI F,PAL B.Modal analysis of grid-connected doubly fed induction generators[J].IEEE Transactions on Energy Conversion,2007,22(3):728-736.
    [19]MEI F,PAL B.Modelling and small-signal analysis of a grid connected doubly-fed induction generator[C]//IEEE Power Engineering Society General Meeting,June 12-16,2005,San Francisco,USA:2101-2108.
    [20]QIAO Wei.Dynamic modeling and control of doubly fed induction generators driven by wind turbines[C]//IEEE/PES Power Systems Conference and Exposition, March 15-18,2009,Seattle,USA:8p.
    [21]YANG Bo,YU Tao,SHU Hongchuan,et al.Robust slidingmode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers[J].Applied Energy,2018,210:711-723.
    [22]LIU Y,WU Q H,ZHOU X X,et al.Perturbation observer based multiloop control for the DFIG-WT in multimachine power system[J].IEEE Transactions on Power Systems,2014,29(6):2905-2915.
    [23]YANG Bo,HU Yilin,HUANG Haiyan,et al.Perturbation estimation based robust state feedback control for grid connected DFIG wind energy conversion system[J].International Journal of Hydrogen Energy,2017,42(33):20994-21005.
    [24]李洪亮,姜建国,乔树通.三电平SVPWM与SPWM本质联系及对输出电压谐波的分析[J].电力系统自动化,2015,39(12):130-137.DOI:10.7500/AEPS20140818009.LI Hongliang,JIANG Jianguo, QIAO Shutong.Essential relation between three-level SVPWM and SPWM and analysis on output voltage harmonic[J].Automation of Electric Power Systems, 2015, 39(12):130-137. DOI:10.7500/AEPS20140818009.
    [25]YANG Bo,JIANG Lin,YU Tao,et al.Passive control design for multi-terminal VSC-HVDC systems via energy shaping[J].International Journal of Electrical Power&Energy Systems,2018,98:496-508.
    [26]SAAD N H,SATTAR A A,MANSOUR A E.Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy[J].Renewable Energy,2015,80:583-594.
    [27]XU Min, MENG Qiang, HUANG Zhongxiang.Global convergence of the trial-and-error method for the trafficrestraint congestion-pricing scheme with day-to-day flow dynamics[J].Transportation Research Part C:Emerging Technologies,2016,69:276-290.
    [28]YANG B,SANG Y Y,SHI K,et al.Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems[J].Control Engineering Practice,2016,56:13-26.
    [29]张榴晨,吴文晗,茆美琴.基于PIR控制器的CSC-DPMSGWGS低电压穿越控制[J].电力系统自动化,2017,41(14):153-158.DOI:10.7500/AEPS20170125002.ZHANG Liuchen,WU Wenhan,MAO Meiqin.PIR controller based low voltage ride-through control of current source converter based direct-drive PMSG wind generation system[J].Automation of Electric Power Systems, 2017, 41(14):153-158.DOI:10.7500/AEPS20170125002.
    [30]施凯,叶海涵,徐培凤,等.基于欠励磁状态运行的虚拟同步发电机低电压穿越控制策略[J].电力系统自动化,2018,42(9):134-139.DOI:10.7500/AEPS20170930005.SHI Kai,YE Haihan,XU Peifeng,et al.Under-excitation operation of low voltage ride-through control strategy for virtual synchronous generator[J].Automation of Electric Power Systems,2018,42(9):134-139.DOI:10.7500/AEPS20170930005.