相变温控导热增强的多孔金属梯度优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gradient optimization of metal cellular material as thermal conductivity enhancer for phase -change temperature control
  • 作者:王佳优 ; 马广朋 ; 康帅帅 ; 张永存
  • 英文作者:WANG Jia-you;MA Guang-peng;KANG Shuai-shuai;ZHANG Yong-cun;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology;
  • 关键词:梯度设计 ; 相变换热 ; 多孔金属材料 ; 温度控制 ; 优化
  • 英文关键词:gradient design;;phase change;;metal cellular material;;temperature control;;optimization
  • 中文刊名:JSJG
  • 英文刊名:Chinese Journal of Computational Mechanics
  • 机构:大连理工大学工业装备结构分析国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:计算力学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(11572071;U1808215)资助项目
  • 语种:中文;
  • 页:JSJG201903007
  • 页数:7
  • CN:03
  • ISSN:21-1373/O3
  • 分类号:45-51
摘要
高孔隙率金属多孔材料比表面积大、导热性能好且掺混能力强,是理想的相变换热导热增强体材料。增材制造能够精准制备几何高度复杂的微结构,为多孔金属任意梯度设计提供可能。为实现更高的相变换热性能,建立了多孔金属相变温控导热增强的梯度优化设计模型。该优化模型以孔隙率分布为设计变量,以多孔金属用量为约束,以关键位置的温度最低为设计目标,基于考虑相变过程的多孔介质两方程模型为分析方法,通过遗传算法对优化模型进行求解。通过与实验结果的对比,验证了分析方法的有效性。两个具体算例证实了梯度设计能够大幅度提高多孔金属介质导热增强的相变温控性能。
        Metal cellular materials with high porosity is an ideal thermal conductivity enhancer because of their large specific surface area,high thermal conductivity,and strong mixing ability.Additive manufacturing is able to fabricate cellular materials with defined complex mesostructures including the gradient cellular structure.In this study,the gradient optimization model of cellular materials as a thermal conductivity enhancer for the phase-change temperature control is proposed.In the optimization model,the porosity is regarded as a design variable,the amount of the cellular consumed is considered as the constraint,and the minimum temperature at the key position is the design goal.The numerical method based on the two-equation model of cellular media considering phase-change is employed here and the optimization model is solved by the genetic algorithm.The effectiveness of the analytical model is verified by the comparison with the experimental results.Two special examples demonstrate that the enhanced performance of phase-change temperature control can be achieved by the gradient design of a metal cellular material as a thermal conductivity enhancer.
引文
[1] 周伟,张芳,王小群.相变温控在电子设备上的应用研究进展[J].电子器件,2007,30(1):344-348.(ZHOU Wei,ZHANG Fang,WANG Xiao -qun.Pro -spect of thermal control phase change in electronic devices[J].Chinese Journal of Electron Devices,2007,30(1):344-348.(in Chinese))
    [2] Humphries W R,Griggs E I.A design handbook for phase change thermal control and energy storage devices [J].Nasa Sti/recon Technical Report N,1977:78.
    [3] 王佩广,刘永绩,王浚.相变蓄热材料在高超声速飞行器热控系统中的应用[J].中国工程科学,2008,10(7):188-192.(WANG Pei-guang,LIU Yong-ji,WANG Jun.Application of phase change materials to thermal control systems for hypersonic vehicles[J].Engineering Sciences,2008,10(7):188-192.(in Chinese))
    [4] Ling Z Y,Zhang Z G,Shi G Q,et al.Review on thermal management systems using phase change materials for electronic components,Li-ion batteries and photovoltaic modules[J].Renewable and Sustainable Energy Reviews,2014,31:427-438.
    [5] Zhao C Y,Lu W,Tian Y.Heat transfer enhancement for thermal energy storage using metal foams embe -dded within phase change materials (PCMs)[J].Solar Energy,2010,84(8):1402-1412.
    [6] Chen J Q,Yang D H,Jiang J H,et al.Research progress of phase change materials (PCMs) embe -dded with metal foam (a review) [J].Procedia Materials Science,2014,4:389-394.
    [7] Wang H F,Wang F X,Li Z T,et al.Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin compo -site phase change material[J].Applied Energy,2016,176:221-232.
    [8] Swaminathan Gopalan K,Eswaran V.Numerical investigation of thermal performance of PCM based heat sink using structured porous media as thermal conductivity enhancers[J].International Journal of Thermal Sciences,2016,104:266-280.
    [9] Yang J L,Yang L J,Xu C,et al.Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity[J].International Journal of Heat and Mass Transfer,2015,84:1008-1018.
    [10] Zhu F,Zhang C,Gong X L.Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity[J].Applied Thermal Engineering,2017,123:256-265.
    [11] Zhang Z Q,He X D.Three -dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient[J].Applied Thermal Engineering,2017,113:298-308.
    [12] Yang X H,Wang W B,Yang C,et al.Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J].International Journal of Heat and Mass Transfer,2016,98:60-69.
    [13] Murr L E,Gaytan S M,Ramirez D A,et al.Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J].Journal of Materials Science & Technology,2012,28(1):1-14.
    [14] Maskery I,Aboulkhair N T,Aremu A O,et al.A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting [J].Materials Science and Enginee -ring:A,2016,670:264-274.
    [15] Li W Q,Qu Z G,He Y L,et al.Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J].Applied Thermal Engineering,2012,37:1-9.
    [16] Boomsma K,Poulikakos D.On the effective thermal conductivity of a three -dimensionally structured fluid-saturated metal foam [J].International Journal of Heat and Mass Transfer,2001,44(4):827-836.
    [17] Calmidi V V,Mahajan R L.Forced convection in high porosity metal foams [J].Journal of Heat Transfer,2000,122(3):557-565.
    [18] Kuwahara F,Shirota M,Nakayama A.A numerical study of interfacial convective heat transfer coefficient in two -energy equation model for convection in po -rous media[J].International Journal of Heat and Mass Transfer,2001,44(6):1153-1159.
    [19] Tian Y,Zhao C Y.A numerical investigation of heat transfer in phase change materials(PCMs)embedded in porous metals[J].Energy,2011,36(9):5539-5546.