单旋翼无人机作业高度对槟榔雾滴沉积分布与飘移影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Working Height of Single-rotor Unmanned Aerial Vehicle on Drift and Droplets Deposition Distribution of Areca Tree
  • 作者:王娟 ; 兰玉彬 ; 姚伟祥 ; 陈鹏超 ; 林晋立 ; 燕颖斌
  • 英文作者:WANG Juan;LAN Yubin;YAO Weixiang;CHEN Pengchao;LIN Jinli;YAN Yingbin;College of Engineering,South China Agricultural University;Mechanical and Electrical Engineering College,Hainan University;National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology ( NPAAC);
  • 关键词:单旋翼无人机 ; 喷施 ; 槟榔树 ; 雾滴 ; 沉积 ; 飘移规律
  • 英文关键词:single rotor UAV;;spraying;;areca;;droplet;;deposition;;drift law
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:华南农业大学工程学院;海南大学机电工程学院;国家精准农业航空施药技术国际联合研究中心;
  • 出版日期:2019-05-08 14:34
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:广东省教育厅重点平台及科研项目(2015KGJHZ007);; 广州市科技计划项目(201807010039);; 高等学校学科创新引智计划项目(D18019);; 广东省引进领军人才项目(2016LJ06G689);; 国家重点研发计划项目(2016YFD0200700);; 广东省自然科学基金项目(2017A030310383)
  • 语种:中文;
  • 页:NYJX201907011
  • 页数:11
  • CN:07
  • ISSN:11-1964/S
  • 分类号:116-126
摘要
为了阐明3WQF120-12型单旋翼无人植保机喷施槟榔树的雾滴沉积效果、地面流失雾滴沉积分布、飘移及可应用性,研究了无人机不同作业高度对槟榔树冠层及地面喷施效果的影响。试验选用诱惑红染色剂,并配制成质量分数为0. 5%的水溶液,代替农药;用铜版纸进行雾滴采集,并利用图像处理软件Deposit Scan分析得出雾滴沉积结果。结果表明:作业高度对槟榔树各层采样点的雾滴沉积量没有显著性影响,同一高度作业时,树冠上层与树冠下层、树冠上层与树果层之间的雾滴沉积量有显著差异,树冠上层雾滴沉积水平最高可达53. 27%,树冠下层和树果层可达树冠上层的59. 19%和27. 91%;地面流失采样点雾滴沉积结果显示,不同作业高度对地面3列采样点的雾滴沉积量有显著性影响,最低平均沉积水平约19. 9%;飘移区数据显示,3个作业高度对飘移带采样点的雾滴沉积量没有显著性影响,当作业高度为12. 09 m时,飘移带测得的飘移量最大,作业高度10. 40 m时飘移量最小。同时测试发现,飘移距离最远可达36. 35 m,因此实际作业时必须留出足够的安全距离。
        Aiming to elucidate the effects of 3WQF120-12 single-rotor unmanned aerial vehicle( UAV)on the effect of droplet,deposition distribution,ground loss droplets,drift,and applicability when spraying areca palm. The impact of different working heights of UAV on the spraying effect of areca palm canopy was mainly studied. In this experiment,the red stain aqueous solution with a mass fraction of 0. 5% was selected and instead of pesticides. The droplets were collected on coated paper and analyzed by an image processing software( DepositScan). The results showed that when the operation height was 12. 09 m,11. 46 m and 10. 40 m,respectively,the operation height had no significant influence on the droplets deposition amount of the sampling points in each layer of the areca palm. Meanwhile,the deposition level in the upper canopy could reach 53. 27%,that of the lower canopy and fruit layer can reach 59. 19% and 27. 91% of the upper canopy. The results of the droplets deposition at the ground loss sampling points showed that the droplets deposition of the three column sampling points on the ground was significantly affected by different operation heights. When the operation height was 10. 40 m,the droplets loss on the ground was the least,and the average deposition level was about 19. 9%. The data of the drift area showed that the three working heights had no significant influence on the droplets deposition of the sampling points in the drift line. When the working height was 12. 09 m,the drift line sample location measured the largest amount of drift and the working height of 10. 40 m had the smallest. At the same time,it was found that the downwind distance corresponding to 90% drift accumulation could reach as far as 36. 35 m. Therefore,sufficient safety distance must be left for practical operation. The areca aerial spraying was very different from that of conventional crops,mainly in working speed and height. The speed of areca aerial spraying was about 1. 5 m/s,which was much lower than usual speed( 3 ~ 5 m/s),and the working height can usually be more than 10 m. The wake vortices were mainly influenced by working height,as the working height increased,the amount of droplets deposition was decreased,especially in the upper layer of the areas' canopy. Due to the operation speed was slow,the acting time of the rotor wind field was relatively long. The combined action of downwash airflow and crosswind in the rotor wind field can significantly improve the penetration of droplets. In this experiment,there were three different working heights,and the droplet volume median diameter( VMD) of droplets in each layer was changed significantly with the working heights. With the increase of crosswind and working height,the droplet volume median diameter( VMD) of droplets in each layer was decreased,and the mean deposition and percent area coverage rate in the fruit layer could increase by up to 53. 75% and 62. 20%,respectively. In actual operations,appropriate operation parameters can be selected according to the growing period and the occurrence part of diseases and pests.
引文
[1]符之学,刘立云,李艳,等.槟榔农业生产技术研究[J].安徽农业科学,2014,42(14):4229-4230,4292.FU Zhixue,LIU Liyun,LI Yan,et al. On agricultural production technology of betelnut[J]. Journal of Anhui Agricultural Sciences,2014,42(14):4229-4230,4292.(in Chinese)
    [2]董志国,刘立云,王萍,等.槟榔寒害调查研究[J].安徽农学通报,2008(14):98-99.
    [3]卢琨,李国胜.中国槟榔产业现状及其发展对策分析[J].热带农业工程,2010,34(3):34-37.LU Kun,LI Guosheng. Analysis of areca nut industrial situations and their countermeasures in China[J]. Tropical Agricultural Engineering,2010,34(3):34-37.(in Chinese)
    [4]丁晓军,唐庆华,严静,等.中国槟榔产业中的病虫害现状及面临的主要问题[J].中国农学通报,2014,30(7):246-253.DING Xiaojun,TANG Qinghua,YAN Jing,et al. Current pest status and key problems in areca nut palm industry in China[J]. Chinese Agricultural Science Bulletin,2014,30(7):246-253.(in Chinese)
    [5] TANG Q H,YU F Y,ZHANG S Q,et al. First report of Burkholderia andropogonis causing bacterial leaf spot of betel palm in Hainan Province,China[J]. Plant Disease,2013,97(12):1654.
    [6]车海彦.海南省植原体病害多样性调查及槟榔黄化病植原体的分子检测技术研究[D].杨凌:西北农林科技大学,2010.CHE Haiyan. Diversity of phytoplasma disease and molecular detection of phytoplasma associated with areca nut yellow leaf in Hainan Province[D]. Yangling:Northwest A&F University,2010.(in Chinese)
    [7]郭志涛,马杰,曾叶伟.海南槟榔树高度测量及对输电线路的造价影响[J].电子测试,2017(23):102,99.GUO Zhitao,MA Jie,ZENG Yewei. Height measurement of areca tree in Hainan and its influence on the cost of transmission line[J]. Electronic Test,2017(23):102,99.(in Chinese)
    [8] GLASS C R,WALTERS K F,GASKELL P H,et al. Recent advances in computational fluid dynamics relevant to the modelling of pesticide flow on leaf surfaces[J]. Pest Management Science,2010,66(1):2-9.
    [9] HILZ E,AWP V. Spray drift review:the extent to which a formulation can contribute to spray drift reduction[J]. Crop Protection,2013,44(1):75-83.
    [10] LAN Y B,CHEN S D,FRITZ B K. Current status and future trends of precision agricultural aviation technologies[J].International Journal of Agricultural&Biological Engineering,2017,10(3):1-17.
    [11] FRITZ B K,KIRK I W,HOFFMANN W C,et al. Aerial application methods for increasing spray deposition on wheat heads[J].Transactions of the ASABE,2006,22(3):357-364.
    [12] KIRK L W,TESKE M E,THISTLE H W. What about upwind buffer zones for aerial applications?[J]. Journal of Agricultural Safety&Health,2002,8(3):333-336.
    [13] TESKE M E,THISTLE H W. Release height and far-field limits of Lagrangian aerial spray models[J]. Transactions of the ASAE,2003,46(4):977-983.
    [14] HEWITT A J,MABER J,PRAAT J P. Drift management using a GIS system[C]∥Proceedings of the World Congress of Computer in Agriculture and Natural Resources,2002:290-296.
    [15]邱白晶,王立伟,蔡东林,等.无人直升机飞行高度与速度对喷雾沉积分布的影响[J].农业工程学报,2013,29(24):25-32.QIU Baijing,WANG Liwei,CAI Donglin,et al. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the CSAE,2013,29(24):25-32.(in Chinese)
    [16]陈盛德,兰玉彬,李继宇,等.小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J].农业工程学报,2016,32(17):40-46.CHEN Shengde,LAN Yubin,LI Jiyu,et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the CSAE,2016,32(17):40-46.(in Chinese)
    [17]陈盛德,兰玉彬,FRITZ B K,等.多旋翼无人机旋翼下方风场对航空喷施雾滴沉积的影响[J/OL].农业机械学报,2017,48(8):105-113.CHEN Shengde,LAN Yubin,FRITZ B K,et al. Effect of wind field below rotor on distribution of aerial spraying droplet deposition by using multi-rotor UAV[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):105-113. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20170811&journal_id=jcsam.DOI:10. 6041/j. issn. 1000-1298. 2017. 08. 011.(in Chinese)
    [18]薛新宇,兰玉彬.美国农业航空技术现状和发展趋势分析[J/OL].农业机械学报,2013,44(5):194-199.XUE Xinyu,LAN Yubin. Agricultural aviation applications in USA[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(5):194-199. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20130534&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298. 2013. 05. 034.(in Chinese)
    [19] ALLAN S F,VINCENT R H. The Washington aerial spray drift study:modeling pesticide spray drift deposition from an aerial application[J]. Atmospheric Environment,2005,39(33):6194-6203.
    [20]张京,何雄奎,宋坚利,等.无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J/OL].农业机械学报,2012,43(12):94-96.ZHANG Jing,HE Xiongkui,SONG Jianli,et al. Influence of spraying parameters of unmanned aircraft on droplets deposition[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(12):94-96. http:∥www. j-csam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20121217&journal_id=jcsam. DOI:10. 6041/j. issn. 1000-1298.2012. 12. 017.(in Chinese)
    [21] HUANG Y,HOFFMANN W C,LAN Y,et al. Development of a spray system for an unmanned aerial vehicle plantform[J].Applied Engineering in Agriculture,2009,25(6):803-809.
    [22] TANG Y,HOU C J,LUO S M,et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers&Electronics in Agriculture,2018,148(5):1-7.
    [23] RICHARDSON B,THISTLE H W. Measured and prediction aerial spray interception by a young pinus radiate canopy[J].Transactions of the ASABE,2005,49(1):15-23.
    [24] LAN Y,HOFFMANN W C,FRITZ B K,et al. Spray drift mitigation with spray mix adjuvants[J]. Applied Engineering in Agriculture,2008,24(1):5-10.
    [25] CREECH C F,HENRY R S,HEWITT A J,et al. Herbicide spray penetration into corn and soybean canopies using air-induction nozzles and a drift control adjuvant[J]. Weed Technology,2018,32(1):1-8.
    [26]张宋超,薛新宇,秦维彩,等. N-3型农用无人直升机航空施药飘移模拟与试验[J].农业工程学报,2015,31(3):87-93.ZHANG S C,XUE X Y,QIN W C,et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the CSAE,2015,31(3):87-93.(in Chinese)
    [27]王潇楠,何雄奎,王昌陵,等.油动单旋翼植保无人机雾滴飘移分布特性[J].农业工程学报,2017,33(1):117-123.WANG Xiaonan,HE Xiongkui,WANG Changling,et al. Spray drift characteristics of fuel powered single-rotor UAV for plant protection[J]. Transactions of the CSAE,2017,33(1):117-123.(in Chinese)
    [28]姚伟祥,兰玉彬,王娟,等. AS350B3e直升机航空喷施雾滴飘移分布特性[J].农业工程学报,2017,33(22):75-83.YAO Weixiang,LAN Yubin,WANG Juan,et al. Droplet drift characteristics of aerial spraying of AS350B3e helicopter[J].Transactions of the CSAE,2017,33(22):75-83.(in Chinese)
    [29]秦维彩,薛新宇,周立新,等.无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J].农业工程学报,2014,30(5):50-56.QIN Weicai,XUE Xinyu,ZHOU Lixin,et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the CSAE,2014,30(5):50-56.(in Chinese)
    [30]薛新宇,梁建,傅锡敏.我国航空植保技术的发展前景[J].农业技术与装备,2010(5):27-28.
    [31]兰玉彬,陈盛德,李继宇,等.基于北斗定位系统对飞控手飞行质量的评价系统:205563277U[P]. 2016-09-07.
    [32]傅泽田,祁力钧,王秀,等.农药喷施技术的优化[M].北京:中国农业科学技术出版社,2002:109-111.
    [33] XUE X Y,TU K,QIN W C,et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J].International Journal of Agricultural&Biological Engineering,2014,7(4):23-28.
    [34]文晟,韩杰,兰玉彬,等.单旋翼植保无人机翼尖涡流对雾滴飘移的影响[J/OL].农业机械学报,2018,49(8):127-137,160.WEN Sheng,HAN Jie,LAN Yubin,et al. Influence of wing tip vortex on drift of single rotor plant protection unmanned aerial vehicle[J/OL]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(8):127-137,160. http:∥www. jcsam. org/jcsam/ch/reader/view_abstract. aspx? flag=1&file_no=20180815&journal_id=jcsam. DOI:10. 6041/j. issn.1000-1298. 2018. 08. 015.(in Chinese)