普洱茶(熟茶)发酵过程各层间真菌群落的动态变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fungal community dynamic change in different layers of solid-state fermentation of Pu-erh ripe tea
  • 作者:方欣 ; 骆爱国 ; 涂青 ; 何姣姣 ; 周艳珠 ; 廖琴 ; 周红杰 ; 李亚莉
  • 英文作者:FANG Xin;LUO Aiguo;TU Qing;HE Jiaojiao;ZHOU Yanzhu;LIAO Qin;ZHOU Hongjie;LI Yali;Pu-erh Tea College, Yunnan Agricultural University;
  • 关键词:普洱茶熟茶 ; 固态发酵 ; 真菌 ; 群落变化
  • 英文关键词:Pu-erh ripe tea;;solid state fermentation;;fungi;;community changes
  • 中文刊名:SSPJ
  • 英文刊名:Food Science and Technology
  • 机构:云南农业大学普洱茶学院;
  • 出版日期:2019-05-20
  • 出版单位:食品科技
  • 年:2019
  • 期:v.44;No.331
  • 基金:国家自然科学基金项目(31460215);; “云岭技术领军人才”项目(云发改人事[2014]1782)
  • 语种:中文;
  • 页:SSPJ201905013
  • 页数:6
  • CN:05
  • ISSN:11-3511/TS
  • 分类号:48-53
摘要
为了阐明真菌类微生物在普洱茶熟茶固态发酵中的类群特点和变化规律,以高通量测序方法研究了普洱茶熟茶大规模生产中的各阶段不同层次共计22个样品的真菌多样性及群落变化。在整个固态发酵过程中,共检测到真菌10门(Phyla)、122属(Genera),在属水平上占据优势的真菌菌种包括:曲霉属(Aspergillus)、Blastobotrys属、根毛霉属(Rhizomucor)、嗜热真菌属(Thermomyces)、德巴利酵母属(Debaryomyces)、假丝酵母属(Candida)、青霉属(Penicillium)、Rasamsonia属。结果表明,原料中的真菌类群与实际固态发酵开始后的真菌类群占比存在较大差异,真菌类群呈现集中性,前期以Aspergillus占据绝对优势,后期则以酵母类的Blastobotrys属占据优势地位。不同层间优势菌属基本一致,但相对含量、结构存在一定的差异,固态发酵上层最优势菌属演替速度高于中、下层。
        In order to clarify the fungal community characteristis and change regularity of in the solid fermentation of Pu-erh ripe tea. The fungal community of different stages of the large-scale production of Pu-erh ripe tea was detected by using high-throughput sequencing technology. During the whole solid-state fermentation process, a total of 10 phyla and 122 genera were detected, and the fungal species dominant at the genus level include: Aspergillus, Blastobotrys, Rhizomucor, Thermomyces, Debaryomyces, Candida, Penicillium, Rasamsonia. The results showed that the fungal group in the raw material was significantly different from the actual fungal group after the start of solid state fermentation. The fungal group was concentrated, with the superiority of Aspergillus in the early stage and the Blastobotrys in the late stage dominance. The dominant genus of different layers is basically the same, but the relative content and structure are different. The success rate of the most dominant bacteria in the upper layer of solid fermentation is higher than that of the middle and lower layers.
引文
[1]熊昌云,彭远菊,王兴华,等.普洱茶不同溶剂提取组分降脂减肥作用的比较研究[J].茶叶科学,2012,32(6):543-551.
    [2]李彦川,李欣欣,周王谊,等.普洱茶水提物与硝苯地平联用降压效果研究[J].茶叶科学,2015,35(2):165-170.
    [3]Xu P,Chen H,Wang Y,et al.Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice[J].Journal of Food Science,2012,77(11):H246-H252.
    [4]岳随娟,刘建,龚加顺.普洱茶茶褐素对大鼠肠道菌群的影响[J].茶叶科学,2016,36(3):261-267.
    [5]刘洪娟,吕翠,刘晓丽,等.普洱茶对慢性铅暴露致肾炎症损伤的保护作用及机制研究[J].茶叶科学,2014,34(5):442-450.
    [6]地理标志产品普洱茶:GB/T 22111-2008[S].北京:中国标准出版社,2008:2-5.
    [7]周红杰,李家华,赵龙飞,等.渥堆过程中主要微生物对云南普洱茶品质形成的研究[J].茶叶科学,2004,24(3):212-218.
    [8]赵振军,童华荣,周黎,等.普洱茶中真菌种群的分离与分子鉴定[J].茶叶科学,2009,29(06):436-442.
    [9]杨瑞娟,吕杰,严亮,等.普洱茶渥堆发酵中嗜热真菌的分离和鉴定[J].茶叶科学,2011,31(04):371-378.
    [10]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev,1995,59(1):143-169.
    [11]赵明.普洱茶发酵过程微生物多样性的454 pyrosequencing研究[A].中国科学技术协会,云南省人民政府.第16届中国科协年会--分12茶学青年科学家论坛论文集[C].,2014:8.
    [12]张阳,赵树欣,梁慧珍,等.普洱茶发酵过程中真菌群落结构的变化分析[J].中国酿造,2012,31(01):122-125.
    [13]杨晓苹,罗剑飞,刘昕,等.普洱茶固态发酵过程中微生物群落结构及变化[J].食品科学,2013,34(19):142-147.
    [14]白飞荣,姚粟,田海霞,等.基于高通量测序和可培养方法的勐海发酵普洱茶真菌多样性分析[J].食品与发酵工业,2018,44(12):43-51.
    [15]Ercolini D.High-Throughput Sequencing and Metagenomics:Moving Forward in the Culture Independent Analysis of Food Microbial Ecology[J].Applied&Environmental Microbiology,2013,79(10):3148-3155.
    [16]米其利,李雪梅,管莹,等.高通量测序在食品微生物生态学研究中的应用[J].食品科学,2016,37(23):302-308.
    [17]Littlefair J E,Clare E L.Barcoding the food chain:from Sanger to high-throughput sequencing[J].Genome,2016,59(11):946.
    [18]宋琳玲,曾光明,陈耀宁,等.固态发酵过程中微生物总DNA提取方法比较[J].环境科学学报,2008,(11):2200-2205.