Li_2Mn_(0.35)Ti_(0.65)O_3的高温固相合成与交换性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-temperature Solid Phase Synthesis and Exchange Performance Research of Li_2Mn_(0.35)Ti_(0.65)O_3
  • 作者:江津河 ; 马欣欣 ; 刘方旺 ; 江冠禹
  • 英文作者:JIANG Jinhe;MA Xinxin;LIU Fangwang;JIANG Guanyu;College of Chemistry and Chemical Engineering,Weifang University;College of Chemical Engineering,Qingdao University of Science and Technology;Department of International Business,Shandong Vocational College of Foreign Affairs Translation;
  • 关键词:化学分析 ; 离子交换机理 ; 复合氧化物 ; 锂离子电池
  • 英文关键词:chemical analysis;;ion exchange mechanism;;compound oxides;;lithium ion battery
  • 中文刊名:SYSY
  • 英文刊名:Research and Exploration in Laboratory
  • 机构:潍坊学院化学化工与环境工程学院;青岛科技大学化工学院;山东外事翻译职业学院国际商学院;
  • 出版日期:2019-05-15
  • 出版单位:实验室研究与探索
  • 年:2019
  • 期:v.38;No.279
  • 基金:国家自然科学基金资助项目(51541205)
  • 语种:中文;
  • 页:SYSY201905004
  • 页数:4
  • CN:05
  • ISSN:31-1707/T
  • 分类号:16-18+35
摘要
在一定的温度下,通过合理配比、研磨混合及高温固相反应合成离子交换剂Li_2Mn_(0.35)Ti_(0.65)O_3。当离子交换剂在其物质结构不变的情况下,通过改变化学计量数的方法,可以插入或者抽出一些离子。对Li_2Mn_(0.35)Ti_(0.65)O_3进行X射线粉末衍射测定、原子吸收检测、K_d值检测等,确定锂离子抽出及锂离子交换的能力。结果表明,金属氧化物离子交换机理是内部结构点锂离子抽出及插入实现的主要原因,该离子交换剂能够插入或者抽出锂离子,当样品被1 mol/L硝酸溶液处理后,对锂离子的离子交换能力高达6. 5 mmol/g,从而实现了从海水或者卤水中提取锂离子的可能。
        The ion exchanger Li_2Mn_(0.35)Ti_(0.65)O_3 is synthesized by rational proportion,grinding mix and high-temperature solid state reaction under particular temperature conditions. The ion exchanger inserts or extracts some ions by changing the stoichiometric number under the condition of maintaining its crystal structure stability. The Li~+ extraction and exchanged capacity of oxide Li_2Mn_(0.35)Ti_(0.65)O_3 is detected by X-ray power diffraction,atomic absorption and K_d value.The results show that Li~+ extraction/insertion in internal structural point is progressed mainly by metal oxide ion exchange mechanism. Experiments show that the ion exchanger can insert or extract lithium ions. When the sample is treated with 1 mol/L nitric acid solution,the ion exchange capacity of lithium ions is up to 6. 5 mmol/g,thereby realizing the possibility of extracting lithium ions from seawater or brine.
引文
[1]Xie L L,Xu Y D,Zhang J J,et al.Facile synthesis and characterization of Li4Ti5O12as anode material for lithium ion batteries[J].Int J Electrochem Sci,2013,8(2):1701-1712.
    [2]田华玲,粟智.尖晶石结构材料Li2Mg Ti3O8的制备及其电化学性能[J].化学研究与应用,2015,27(6):929-933.
    [3]吉国佳,朱桂茹.锂离子筛前驱体Li1.6Mn1.6O4的制备及酸洗研究[J].无机盐工业,2015,47(12):38-42.
    [4]Vivekanandhan S,Venkateswarlu M,Satyanarayana N.Novel urea assisted polymeric citrate route for the synthesis of nanocrystalline spinel Li Mn2O4powders[J].Journal of Alloys and Compounds,2007,441(1):284-290.
    [5]Wang L,Xiao Q Z,Li Z H,et al.Synthesis of Li2CoTi3O8fibers and their application to lithium-ion batteries[J].Electrochimica Acta,2012,77(9):77-82.
    [6]杨珊珊,阮慧敏,沈江南,等.尖晶石型锂锰氧化物离子筛的制备方法及构效性能分析[J].化工进展,2015,34(6):1690-1698.
    [7]林永,赵琨,王曼丽.尖晶石Li Mn2O4纳米粉的合成及其交流阻抗性能研究[J].化学研究与应用,2011,23(8):975-979.
    [8]柏春,郭敏,张慧芳,等.离子筛型锂吸附剂吸附法从盐湖卤水/海水中提锂的研究进展[J].化工进展,2017,36(3):802-809.
    [9]王登登.尖晶石型金属氧化物的制备及其在氧电极中的应用[D].北京:北京化工大学,2013.
    [10]李丹,邓天龙,孙柏.无机离子交换法从卤水中提锂的研究进展[J].广东微量元素科学,2007,14(1):6-10.
    [11]Kenta O,Yoji M,Akinari S,et al.Modelling of column lithium desorption from Li+-loaded adsorbent obtained by adsorption from salt brine[J].Hydrometallurgy,2017,169:31-40.
    [12]Tian L Y,Ma W,Han M.Adsorption behavior of Li+onto nanolithium ion sieve from hybrid magnesium/lithium manganese oxide[J].Chemical Engineering Journal,2010,156(1):134-140.
    [13]刘立虎,陈述林,刘凡,等.水热法制备锂电池正极材料oLi MnO2及其碳纳米管改性[J].无机化学学报,2015,31(4):703-706.
    [14]张钰,粟智,潘会.锂离子电池正极材料Li Ni0.5Co0.4Al0.1O2的合成与性能[J].无机化学学报,2015,31(9):1827-1830.
    [15]王涛,孟庆祥,许海涛,等.纳米纤维锂离子筛吸附剂的制备及表征[J].无机盐工业,2016,48(3):29-33.
    [16]Ma L W,Chen B Z,Shi X C,et al.Li+extraction/adsorption properties of Li-Sb-Mn composite oxides in aqueous medium[J].Transactions of Nonferrous Metal Society China,2011,21(7):1660-1664.
    [17]Ma L W,Nie Z R,Xi X L,et al.Lithium ion-sieve:Characterization and Li+ adsorption in ammonia buffer system[J].Journal of Environmental Chemical Engineering,2017,5(1):995-1003.
    [18]Zhang Q H,Li S P,Sun S Y,et al.Lithium selective adsorption on1-D MnO2 nanostructure ion-sieve[J].Advanced Powder Technology,2009,20(5):432-437.