基于动态液滴法的外绝缘材料憎水性自持特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Hydrophobicity of Polymeric Insulating Materials by Dynamic Drop Test
  • 作者:阎志鹏 ; 梁曦东 ; 刘瑛岩 ; 罗兵 ; 何子兰
  • 英文作者:YAN Zhipeng;LIANG Xidong;LIU Yingyan;LUO Bing;HE Zilan;State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering,Tsinghua University;Electric Power Research Institute,China Southern Power Grid;
  • 关键词:动态液滴法 ; 憎水性 ; 外绝缘材料 ; 静态接触角法 ; 喷水分级法
  • 英文关键词:dynamic drop test;;hydrophobicity;;insulation materials;;static contact angle method;;hydrophobicity classification method
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:电力系统及发电设备控制和仿真国家重点实验室(清华大学电机工程与应用电子技术系);南方电网科学研究院有限责任公司;
  • 出版日期:2018-08-13 15:31
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.316
  • 基金:中国南方电网有限责任公司电网技术研究中心(CSGTRC-K153020)~~
  • 语种:中文;
  • 页:GDYJ201903011
  • 页数:9
  • CN:03
  • ISSN:42-1239/TM
  • 分类号:85-93
摘要
憎水性是复合绝缘子防污闪性能的重要判据,同时也是考核复合绝缘子运行状态的重要指标之一。基于国际大电网会议(CIGRE)D1.58工作组的循环对比试验,给出了交流电压下动态液滴法的推荐试验方法和参数。通过对硅橡胶和EVA树脂的两种材料的憎水性试验结果进行对比,可以得出结论:利用静态接触角法和喷水分级法无法反映出两种材料憎水性的差别,而动态液滴试验能够有效的区分出两种材料在电场作用下憎水性的自持能力,HTV的憎水性特征寿命为661.3min,明显优于EVA树脂。将液滴在绝缘材料表面的动态过程和泄漏电流的变化过程分成3个阶段:憎水性自持阶段、憎水性退化阶段以及憎水性丧失阶段。液滴沿材料表面滑动过程中引起的电场畸变是导致外绝缘材料憎水性丧失的主要原因。动态液滴法在憎水性评估过程中存在优势,有望成为一种新的外绝缘材料憎水性评估的方法。
        Hydrophobicity is one of most important properties for the pollution performance of composite insulators, and it is also one of important indexes to evaluate the operating state. Consequently, we presented the recommended test method and parameters of dynamic droplet test under AC voltage based on the round robin test of CIGRE D1.58 working group.By contrasting the results of the hydrophobicity tests for two materials such as silicone rubber and EVA resin, it can be concluded that the difference between the hydrophobicity of the two materials cannot be distinguished by the static contact angle method and the hydrophobicity classification method. At the same time, dynamic droplet test can effectively distinguish the two materials in the AC electric field. Hydrophobic characteristic life of HTV is 661.3 min, which is significantly higher than that of EVA resin. Furthermore, the dynamic process of the droplet on the surface of the insulating material and the process of the leakage current are divided into three stages: the hydrophobic retention stage, the hydrophobic degradation stage, and the hydrophobic loss stage. The electric field distortion caused by the droplet sliding along the surface of the material is the main reason of the loss of hydrophobicity. The dynamic droplet method has advantages in hydrophobicity tests and is expected to be a new method to evaluate the hydrophobicity of an outdoor insulation material.
引文
[1]LIANG X D, WANG S W, FAN J, et al. Development of compositeinsulators in China[J]. IEEE Transactions on Dielectrics and ElectricalInsulation, 1999, 6(5):586-594.
    [2]梁曦东,高岩峰,王家福,等.中国硅橡胶复合绝缘子快速发展历程[J].高电压技术,2016,42(9):2888-2896.LIANG Xidong, GAO Yanfeng, WANG Jiafu, et al. Rapid develop-ment of silicone rubber composite insulator in China[J]. High VoltageEngineering, 2016, 42(9):2888-2896.
    [3]关志成,刘瑛岩,周远翔,等.绝缘子及输变电设备外绝缘[M].北京:清华大学出版社,2006:261-311.GUANZhicheng,LIUYingyan,ZHOUYuanxiang,etal.Insulatorsand outdoor insulation of power transmission equipments[M]. Beijing,China:Tsinghua University Press, 2006:281-295.
    [4]HILLBORGH,GEDDEUW.Hydrophobicitychangesinsiliconerubbers[J]. IEEE Transactions on Dielectrics and Electrical Insulation,1999, 6(5):703-717.
    [5]屠幼萍,陈静静,许卓,等.长期运行复合绝缘子憎水性的非均匀变化特性[J].高电压技术,2013,39(6):1469-1475.TU Youping, CHEN Jingjing, XU Zhuo, et al. Uneven change charac-teristic of composite insulators hydrophobicity in long-time survice[J].High Voltage Engineering, 2013, 39(6):1469-1475.
    [6]梁曦东,李少华,高岩峰,等.大直径复合绝缘子转轮法试验(一):试验参数探讨[J].高电压技术,2018,44(3):673-679.LIANG Xidong, LI Shaohua, GAO Yanfeng, et al. Tracking wheel testfor composite insulator with large diameter:part I-discussion on testparameters[J]. High Voltage Engineering, 2018, 44(3):673-679.
    [7]吴维宁,吴光亚,张锐.输变电设备污闪原因及对策[J].高电压技术,2004,30(7):9-11.WUWeining,WUGuangya,ZHANGRui.Causationanalysisandcountermeasuresofpollution flashoveroftransmissionand distribu-tion equipment[J]. High Voltage Engineering, 2004, 30(7):9-11.
    [8]TOKORO T, HACKAM R. Loss and recovery of hydrophobicity andsurface energy of HTV silicone rubber[J]. IEEE Transactions on Die-lectrics and Electrical Insulation, 2001, 8(6):1088-1097.
    [9]YOSHIMURAN,KUMAGAIS,NISHIMURAS.Electricalandenvironmental aging of silicone rubber used in outdoor insulation[J].IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5):632-650.
    [10]REYNDERS J P, JANDRELL I R, REYNDERS S M. Review of agingandrecoveryofsiliconerubberinsulationforoutdooruse[J].IEEETransactionsonDielectricsandElectricalInsulation,1999,6(5):620-631.
    [11]Guidance on the measurement of wet ability of insulator surfaces:IECT. S. 62073-2003[J], 2003.
    [12]YAN Z P, LIANG X D, GAO Y F, et al. Aging and self-healing prop-ertiesofsuperhydrophobicsiliconerubber[J].IEEETransactionsonDielectrics and Electrical Insulation, 2016, 23(6):3531-3538.
    [13]YAN Z P, LIANG X D, SHEN H, et al. Preparation and basic proper-ties of superhydrophobic silicone rubber with micro-nano hierarchicalstructuresformedbypicosecondlaser-ablatedtemplate[J].IEEETransactionsonDielectricsandElectricalInsulation,2017,24(3):1743-1750.
    [14]贾志东,王也,欧阳小刚,等.绿藻对高温硅化硅橡胶材料憎水性能的影响[J].高电压技术,2017,42(3):885-890.JIAZhidong,WANGYe,OUYANGXiaogang,etal.Influenceofgreen algae on hydrophobic property of HTV silicon rubber[J]. HighVoltage Engineering, 2017, 43(3):885-890.
    [15]关志成,牛康,王黎明,等.环境湿度对硅橡胶材料憎水迁移性的影响[J].高电压技术,2012,38(8):2030-2036.GUAN Zhicheng, NIU Kang, WANG Liming, et al. Influence of am-bienthumidityonhydrophobicitytransferofsiliconerubbermaterial[J]. High Voltage Engineering, 2012, 38(8):2030-2036.
    [16]LIU Y, DU B X. Pattern identification of surface flashover induced bydiscrete water droplets on polymer insulator[J]. IEEE Transactions onDielectrics and Electrical Insulation, 2014, 21(4):1972-1981.
    [17]LIU Y, DU B X. Recurrent plot analysis of leakage current in dynamicdrop test for hydrophobicity evaluation of silicone rubber insulator[J].IEEE Transactions on Power Delivery, 2013, 28(4):1996-2003.
    [18]KENICHI H, DAIKI S, YOSHIHIRO A, et al. Characteristics evalua-tionofthepartialarcdischargeandthesiliconerubbersurfacebydynamic drop test[C]∥Annual Report Conference on Electrical Insu-lation and Dielectric Phenomena.[S.l.]:IEEE, 2008:272-275.
    [19]BAR C, BARSCH R, ALEXANDER H, et al. Evaluation of the reten-tionandrecoveryofhydrophobicityofinsulatingmaterialsinhighvoltage outdoor applications under AC and DC stresses with the dy-namicdroptest[J].IEEETransactionsonDielectricsandElectricalInsulation, 2016, 23(1):294-303.
    [20]KURIMOTO M, BIN MOHD AZMAN M A, KIN R, et al. Influenceof surface roughness on hydrophobic stability of silicone rubber com-posites in dynamic drop test[C]∥10th International Conference on theProperties and Applications of Dielectric Materials(ICPADM).[S.l.]:IEEE:2012.
    [21]DAIKI S, KENICHI H, TATSUYA S, et al. Fundamental research oncharacteristics of hydrophobicity disappearance of silicone rubber sur-face in dynamic drop test[C]∥International Symposium on ElectricalInsulating Materials.[S.l.]:IEEE, 2008:99-102.
    [22]DUBX,HANT,CHENGXX,etal.Characterizationofsurfacedischarge as indicator for hydrophobicity evaluation of silicone rubberinsulators[J].IEEETransactionsonDielectricsandElectricalInsu-la-tion, 2012, 19(5):1708-1714.
    [23]DU B X, LIU Y. Pattern analysis of discharge characteristics for hy-drophobicity evaluation of polymer insulator[J]. IEEE Transactions onDielectrics and Electrical Insulation, 2011, 18(1):114-121.
    [24]Material properties for non-ceramic outdoor insulation:CIGRE WG D1.14[S], 2004.
    [25]梁曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003:18-61.LIANGXidong,CHENChangyu,ZHOUYuanxiang.Highvoltageengineering[M].Beijing,China:TsinghuaUniversityPress,2003:18-61.
    [26]王家福,高岩峰,梁曦东.复合绝缘子芯棒在表面微电流作用下的水解[J].高电压技术,2014,40(3):843-852.WANG Jiafu, GAO Yanfeng, LIANG Xidong. Hydrolysis of compo-siteinsulatorcoreinconditionofmicrosurfacecurrent[J].HighVoltage Engineering, 2014, 40(3):843-852.