A promising new class of irradiation tolerant materials:Ti_2ZrHfV_(0.5)Mo_(0.2) high-entropy alloy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A promising new class of irradiation tolerant materials:Ti_2ZrHfV_(0.5)Mo_(0.2) high-entropy alloy
  • 作者:Yiping ; Lu ; Hefei ; Huang ; Xuzhou ; Gao ; Cuilan ; Ren ; Jie ; Gao ; Huanzhi ; Zhang ; Shijian ; Zheng ; Qianqian ; Jin ; Yonghao ; Zhao ; Chenyang ; Lu ; Tongmin ; Wang ; Tingju ; Li
  • 英文作者:Yiping Lu;Hefei Huang;Xuzhou Gao;Cuilan Ren;Jie Gao;Huanzhi Zhang;Shijian Zheng;Qianqian Jin;Yonghao Zhao;Chenyang Lu;Tongmin Wang;Tingju Li;Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology;Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS);School of Materials Science and Engineering, Nanjing University of Science and Technology;Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;Department of Nuclear Engineering and Radiological Sciences, University of Michigan;
  • 英文关键词:High-entropy alloy;;Irradiation resistance;;Microstructural characterization;;Defects evolution
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology;Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS);School of Materials Science and Engineering, Nanjing University of Science and Technology;Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences;Department of Nuclear Engineering and Radiological Sciences, University of Michigan;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Natural Science Foundation of China (Nos. 11605271, 51471044, 51525401, 51771201 and 51401208);; Support Plan for Innovation of High-level Talents (Top and Leading Talents, 2015R013);Support Plan for Innovation of High-level Talents (Youth Technology Stars, 2016RQ005)
  • 语种:英文;
  • 页:CLKJ201903019
  • 页数:5
  • CN:03
  • ISSN:21-1315/TG
  • 分类号:143-147
摘要
Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their promising irradiation resistant behavior. Here, we report a new single-phase bodycentered cubic(BCC) structured Ti_2 ZrHfV_(0.5)Mo_(0.2) HEA possessing excellent irradiation resistance, i.e.,scarcely irradiation hardening and abnormal lattice constant reduction after helium-ion irradiation,which is completely different from conventional alloys. This is the first time to report the abnormal XRD phenomenon of metallic alloys and almost no hardening after irradiation. These excellent properties make it to be a potential candidate material used as core components in next-generation nuclear reactors. The particular irradiation tolerance derives from high density lattice vacancies/defects.
        Recently, high-entropy alloys(HEAs) or multi-principal-element alloys with unprecedented physical,chemical, and mechanical properties, have been considered as candidate materials used in advanced reactors due to their promising irradiation resistant behavior. Here, we report a new single-phase bodycentered cubic(BCC) structured Ti_2 ZrHfV_(0.5)Mo_(0.2) HEA possessing excellent irradiation resistance, i.e.,scarcely irradiation hardening and abnormal lattice constant reduction after helium-ion irradiation,which is completely different from conventional alloys. This is the first time to report the abnormal XRD phenomenon of metallic alloys and almost no hardening after irradiation. These excellent properties make it to be a potential candidate material used as core components in next-generation nuclear reactors. The particular irradiation tolerance derives from high density lattice vacancies/defects.
引文
[1]S.J.Zinkle,G.S.Was,Acta Mater.61(2013)735-758.
    [2]H.P.Wang,S.J.Yang,L.Hu,B.Wei,Chem.Phys.Lett.653(1)(2016)112-116.
    [3]P.Lv,H.P.Wang,P.F.Zou,K.Zhou,L.Hu,B.Wei,J.Appl.Phys.124(2018),025103.
    [4]T.R.Allen,Y.Chen,X.Ren,K.Sridhara,L.Tan,G.S.Was,E.West,D.A.Guzonas,Comprehensive Nuclear Materials,Elsevier,2012.
    [5]R.M.Boothby,J.Nucl.Mater.230(1996)148-157.
    [6]A.F.Rowcliffe,L.K.Mansur,D.T.Hoelzer,R.K.Nanstad,J.Nucl.Mater.392(2009)341-352.
    [7]S.J.Zinkle,K.A.Terrani,L.L.Snead,Curr.Opin.Solid.State Mater.20(2016)401-410.
    [8]R.L.Klueh,J.P.Shingledecker,R.W.Swindeman,D.T.Hoelzer,J.Nucl.Mater.341(2005)103-114.
    [9]D.A.McClintock,M.A.Sokolov,D.T.Hoelzer,R.K.Nanstad,J.Nucl.Mater.292(2009)353-359.
    [10]M.K.Miller,D.T.Hoelzer,J.Nucl.Mater.418(2011)307-310.
    [11]G.R.Odette,M.J.Alinger,B.D.Wirth,Annu.Rev.Mater.Res.38(2008)471-503.
    [12]I.J.Beyerlein,A.Caro,M.J.Demkowicz,N.A.Mara,A.Misra,B.P.Uberuaga,Mater.Today.16(11)(2013)443-449.
    [13]Y.Zhang,M.Ishimaru,T.Varga,T.Oda,C.Hardiman,H.Xue,Y.Katoh,S.Shannon,W.J.Weber,Phys.Chem.Chem.Phys.14(2012)13429-13436.
    [14]H.Van Swygenhoven,P.M.Derlet,A.G.Froseth,Nat.Mater.3(2004)399-403.
    [15]E.M.Bringa,J.D.Monk,A.Caro,A.Misra,L.Zepeda-Ruiz,M.Duchaineau,F.Abraham,M.Nastasi,S.T.Picraux,Y.Q.Wang,D.Farkas,Nano Lett.12(2012)3351-3355.
    [16]F.Granberg,K.Nordlund,Mohammad W.Ullah,K.Jin,C.Lu,H.Bei,L.M.Wang,F.Djurabekova,W.J.Weber,Y.Zhang,Phys.Rev.Lett.116(2016),135504.
    [17]J.W.Yeh,S.K.Chen,S.J.Lim,J.Y.Gan,T.S.Chin,T.T.Shun,C.H.Tsau,S.Y.Chang,Adv.Eng.Mater.6(2004)299-303.
    [18]B.Cantor,I.T.H.Chang,P.Knight,A.J.B.Vincent,Mater.Sci.Eng.A 375-377(2004)213-218.
    [19]M.C.Gao,J.W.Yeh,P.K.Liaw,Y.Zhang,High-Entropy Alloys:Fundamentals and Applications,Springer,2016.
    [20]B.Gludovatz,A.Hohenwarter,D.Catoor,E.H.Chang,E.P.George,R.O.Ritchie,Science 345(2014)1153-1158.
    [21]Z.Li,K.G.Pradeep,Y.Deng,D.Raabe,C.C.Tasan,Nature 534(2016)227-230.
    [22]C.Y.Lu,L.L.Niu,N.J.Chen,K.Jin,T.N.Yang,P.Y.Xiu,Y.W.Zhang,F.Gao,H.B.Bei,S.Shi,Mo-Rigen He,Ian M.Robertson,W.J.Weber,L.M.Wang,Nat.Commun.7(2016)13564.
    [23]N.A.P.Kiran Kumar,C.Li,K.J.Leonard,H.Bei,S.J.Zinkle,Acta Mater.113(2016)230-244.
    [24]Y.W.Zhang,G.Malcolm Stocks,K.Jin,C.Y.Lu,H.B.Bei,Brian C.Sales,L.M.Wang,L.K.Beland,R.E.Stoller,G.D.Samolyuk,M.Caro,A.Caro,W.J.Weber,Nat.Commun.6(2015)8736.
    [25]L.Yang,H.Ge,J.Zhang,T.Xiong,Q.Jin,Y.Zhou,X.Shao,B.Zhang,Z.Zhu,S.Zheng,X.Ma,J.Mater.Sci.Technol.35(2019),in press.
    [26]S.Q.Xia,Z.Wang,T.F.Yang,Y.Zhang,J.Iron Steel Res.Int.22(2015)879-884.
    [27]S.Guo,C.Ng,J.Lu,C.T.Liu,J.Appl.Phys.109(2011)103505.
    [28]Y.Dong,K.Y.Zhou,Y.P.Lu,X.X.Gao,T.M.Wang,T.J.Li,Mater.Des.57(2014)67-72.
    [29]J.F.Ziegler,J.P.Biersack,U.Littmark,The Stopping and Range of Ions in Matter,Pergamon Press,1985.
    [30]R.E.Stoller,M.B.Toloczko,G.S.Was,A.G.Certain,S.Dwaraknath,F.A.Garner,Nucl.Instrum.Methods B 310(2013)75-80.
    [31]W.C.Olivier,G.M.Pharr,J.Mater.Res.7(1992)1564-1583.
    [32]X.Z.Cao,P.Zhang,Q.Xu,K.Sato,G.D.Cheng,H.B.Wu,X.P.Jiang,R.S.Yu,B.Y.Wang,J.Phys.Conf.Ser.443(2013),012017.
    [33]Q.S.Cao,X.Ju,L.P.Guo,B.Y.Wang,Fusion Eng.Des.89(2014)1101-1106.
    [34]P.Hosemann,D.Frazer,M.Fratoni,A.Bolind,M.F.Ashby,Scr.Mater.143(2018)181-187.
    [35]P.Yvon,F.Carré,J.Nucl.Mater.385(2)(2009)217-222.
    [36]H.F.Huang,W.Zhang,M.De Los Reyes,X.L.Zhou,C.Yang,R.Xie,X.T.Zhou,P.Huai,H.J.Xu,Mater.Des.90(2016)359-363.
    [37]S.J.Zinkle,J.T.Busby,Mater.Today 12(2009)12-19.
    [38]H.Trinkaus,B.N.Singh,J.Nucl.Mater.323(2003)229-242.
    [39]E.H.Lee,T.S.Byun,J.D.Hunn,K.Farrell,L.K.Mansur,J.Nucl.Mater.296(2001)183-191.
    [40]X.L.Zhou,H.F.Huang,R.Xie,G.J.Thorogood,C.Yang,Z.J.Li,H.J.Xu,J.Nucl.Mater.467(2015)848-854.
    [41]Z.J.Wang,C.T.Liu,P.Dou,Phys.Rev.Mater.1(2017),043601.