具有弹性连杆机构的四足机器人对角小跑步态控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Trotting Gait Control of the Quadruped Robot with an Elastic Linkage
  • 作者:李奇敏 ; 任灏宇 ; 蒲文东 ; 蒋建新
  • 英文作者:LI Qimin;REN Haoyu;PU Wendong;JIANG Jianxin;College of Mechanical Engineering, Chongqing University;Unit 78616 of PLA;
  • 关键词:弹性连杆机构 ; 对角小跑步态 ; LCS四足机器人 ; 姿态控制
  • 英文关键词:elastic linkage mechanism;;trotting gait;;LCS quadruped robot;;posture control
  • 中文刊名:JQRR
  • 英文刊名:Robot
  • 机构:重庆大学机械工程学院;78616部队;
  • 出版日期:2019-01-04 09:43
  • 出版单位:机器人
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金(51675063)
  • 语种:中文;
  • 页:JQRR201902007
  • 页数:9
  • CN:02
  • ISSN:21-1137/TP
  • 分类号:63-71
摘要
为了提高四足机器人的运动性能和抗冲击能力,设计了一种具有弹性连杆机构和线驱动系统的四足机器人,称为LCS(linkage-cable-spring)四足机器人.借鉴SLIP (弹簧负载倒立摆)模型,提出了基于着地角的速度控制策略和基于能量补偿的质心高度控制策略.采用姿态控制策略来提高对角小跑步态的运动稳定性.仿真实现了给定前进速度条件下稳定的对角小跑步态.搭建LCS四足机器人样机实验平台,完成了踏步、对角小跑步态行走实验.实验结果表明,LCS四足机器人运动过程中机身翻滚和俯仰角能控制在2?以内,并能平稳通过10 mm×10 mm小型障碍物.
        In order to improve the mobility and shock resistance of quadruped robots, a quadruped robot with elastic linkages and a cable-driven system is designed, named LCS(linkage-cable-spring) quadruped robot. And a speed control strategy is proposed based on the stance angle, and also the centroid height control strategy based on energy compensation, referring to SLIP(spring loaded inverted pendulum) model. The motion stability of trotting gait is improved by the attitude control strategy. Finally, a steady trotting gait is realized by simulation under a given forward speed. Meanwhile, an experimental prototype platform of the LCS quadruped robot is built, and the walking experiment of the stepping and trotting gaits is completed. The experimental results show that the roll and pitch angles of the LCS quadruped robot can be controlled within2?, and the robot can steadily negotiate small obstacles with the size of 10 mm × 10 mm.
引文
[1]Luo Y, Li Q M, Liu Z X. Design and optimization of wheellegged robot:Rolling-Wolf[J]. Chinese Journal of Mechanical Engineering, 2014, 27(6):1133-1142.
    [2]Koo I M, Trong T D, Kang T H, et al. Control of a quadruped walking robot based on biologically inspired approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2007:2975-2980.
    [3]Zhang X L, Zheng H J, Xu G, et al. A biological inspired quadruped robot:Structure and control[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2005:387.
    [4]Ananthanarayanan A, Azadi M, Kim S B. Towards a bioinspired leg design for high-speed running[J]. Bioinspiration&Biomimetics, 2012, 7(4). DOI:10.1088/1748-3182/7/4/046005.
    [5]Seok S O, Wang A, Chuah M, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1117-1129.
    [6]Hubicki C, Grimes J, Jones M, et al. ATRIAS:Design and validation of a tether-free 3D-capable spring-mass bipedal robot[J].International Journal of Robotics Research, 2016, 35(12):1497-1521.
    [7]Topping T T, Vasilopoulos V, De A, et al. Towards bipedal behavior on a quadrupedal platform using optimal control[C]//Proceedings of SPIE, Vol.9837. Bellingham, USA:SPIE, 2016.DOI:10.1117/12.2231103.
    [8]Wu J X, Yao Y N, Ruan Q, et al. Design and optimization of a dual quadruped vehicle based on whole close-chain mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 231(19).DOI:10.1177/0954406216650473.
    [9]柏龙,龙樟,陈晓红,等.连续电驱动四足机器人腿部机构设计与分析[J].机器人,2018,40(2):136-145.Bai L, Long Z, Chen X H, et al. Design and analysis of a leg mechanism for a continuous electrically-driven quadruped robot[J]. Robot, 2018, 40(2):136-145.
    [10]周坤.面向未知复杂地形的四足机器人运动规划方法研究[D].杭州:浙江大学,2017.Zhou K. Research on motion planning method for quadruped robots walking on unknown rough terrain[D]. Hangzhou:Zhejiang University, 2017.
    [11]McNeill A R. Principles of animal locomotion[M]. Princeton,USA:Princeton University Press, 2006.
    [12]张立勋,路敦民,王岚,等.基于差动机构的五连杆式人机合作机器人的动力学分析[J].机器人,2004,26(2):123-126.Zhang L X, Lu D M, Wang L, et al. Dynamics analysis of fivebar cobot based on differential mecahanism[J]. Robot, 2004,26(2):123-126.
    [13]Raibert M H, Tello E R. Legged robots that balance[M]. Cambridge, USA:MIT Press, 1986:89.
    [14]Ankarali M M. Control of hexapedal pronking through a dynamically embedded spring loaded inverted pendulum template[D]. Cankaya, Turkey:Middle East Technical University, 2010.DOI:10.13140/RG.2.1.3737.7442.
    [15]Farley C T, Glasheen J, McMahon T A. Running springs:Speed and animal size[J]. Journal of Experimental Biology, 1993, 185:71-86.
    [16]Koechling J, Marc H. How fast can a legged robot run?[M]//NATO ASI, Vol.102. Berlin, Germany:Springer-Verlag, 1993:239-269.
    [17]韩斌.外部冲击作用下四足仿生机器人动态稳定控制方法研究[D].武汉:华中科技大学,2013.Han B. Dynamically stable control of bionic quadruped robots under external impact[D]. Wuhan:Huazhong University of Science and Technology, 2013.
    [18]李满天,蒋振宇,王鹏飞,等.基于多虚拟元件的直腿四足机器人trot步态控制[J].吉林大学学报:工学版,2015,45(5):1502-1511.Li M T, Jiang Z Y, Wang P F, et al. Control of quadruped robot with straight legs in trotting gait based on virtual elements[J].Journal of Jilin University:Engineering and Technology Edition, 2015, 45(5):1502-1511.
    [19]刘斌,荣学文,柴汇.基于虚拟模型控制的四足机器人缓冲策略[J].机器人,2016,38(6):659-669.Liu B, Rong X W, Chai H. A buffering strategy for quadrupedal robots based on virtual model control[J]. Robot, 2016, 38(6):659-669.