小脑后下动脉瘤解剖仿真模型建立及其用于血管重建术训练的可行性
详细信息    查看全文 | 推荐本文 |
摘要
目的建立一种小脑后下动脉瘤仿真模型,并探讨其用于血管重建技术训练的可行性。方法在3具(6侧)灌注尸头的小脑后下动脉(PICA)起源与椎动脉(VA)夹角处缝合一血管残端凸起,并与临床病例进行对比,模拟PICA动脉瘤,并进行动脉瘤夹闭术或动脉瘤孤立+血管重建术训练,记录造模时间、血管重建术时间以及训练者对动脉瘤模型评分。结果 PICA动脉瘤模型制作过程平均2. 10 h,与临床病例比较,PICA起源均位于舌下神经与延髓侧边夹角内,动脉瘤指向与临床病例相似;临床病例中动脉瘤起源于PICA P1段靠近VA处,模型中动脉瘤起源于PICA P1段与VA交界处;模型中动脉瘤与周围神经、血管的关系与临床病例相似。PICA-PICA侧侧吻合、OA-PICA端侧吻合、VA V3段-桥血管-VA V4段血管吻合术中,动脉瘤孤立+血管重建术平均耗时0. 53、0. 52、0. 97 h。根据6位神经外科医师操作后反馈,动脉瘤孤立+血管重建术操作均类似临床操作,能够模拟临床真实的手术难度。结论本研究建立的动脉瘤模型能够最大程度地模拟PICA动脉瘤及其与周边神经、血管的关系,可用于显微外科动脉瘤夹闭术及血管重建技术训练。
        
引文
[1]Ingall T,Asplund K,Mahonen M,et al. A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study[J]. Stroke,2000,31(5):1054-1061.
    [2]Rose MJ. Aneurysmal subarachnoid hemorrhage:an update on the medical complications and treatments strategies seen in these patients[J]. Curr Opin Anaesthesiol,2011,24(5):500-507.
    [3] Alleyne CH Jr. Aneurysmal subarachnoid hemorrhage:have outcomes really improved[J]. Neurology,2010,74(19):1486-1487.
    [4]le Roux AA,Wallace MC. Outcome and cost of aneurysmal subarachnoid hemorrhage[J]. Neurosurg Clin N Am,2010,21(2):235-246.
    [5]Bertalanffy H,Sure U,Petermeyer M,et al. Management of aneurysms of the vertebral artery-posterior inferior cerebellar artery complex[J]. Neurol Med Chir(Tokyo),1998,38(Suppl):93-103.
    [6]Rodriguez-Hernandez A,Zador Z,Rodriguez-Mena R,et al. Distal aneurysms of intracranial arteries:application of numerical nomenclature,predilection for cerebellar arteries,and results of surgical management[J]. World Neurosurg,2013,80(1-2):103-112.
    [7]Lehto H,Harati A,Niemela M,et al. Distal posterior inferior cerebellar artery aneurysms:clinical features and outcome of 80 patients[J]. World Neurosurg,2014,82(5):702-713.
    [8]Abla AA,Mcdougall CM,Breshears JD,et al. Intracranial-to-intracranial bypass for posterior inferior cerebellar artery aneurysms:options,technical challenges,and results in 35 patients[J]. J Neurosurg,2016,124(5):1275-1286.
    [9]Benet A,Tabani H,Ding X,et al. The transperiosteal"insideout"occipital artery harvesting technique[J]. J Neurosurg,2018,1:1-6.
    [10]de Oliveira M,Ferrarez CE,Ramos TM,et al. Learning brain aneurysm microsurgical skills in a human placenta model:predictive validity[J]. J Neurosurg,2018,128(3):846-852.
    [11]Hijikata T,Baba E,Shirokane K,et al. Dissecting vertebral artery aneurysm presenting regrowth after stent-assisted coil embolization in acute stage[J]. J Clin Med Res,2018,10(6):527-530.
    [12]Abla AA,Uschold T,Preul MC,et al. Comparative use of turkey and chicken wing brachial artery models for microvascular anastomosis training[J]. J Neurosurg,2011,115(6):1231-1235.
    [13]Belykh E,Lei T,Safavi-Abbasi S,et al. Low-flow and high-flow neurosurgical bypass and anastomosis training models using human and bovine placental vessels:a histological analysis and validation study[J]. J Neurosurg,2016,125(4):915-928.
    [14]Benet A,Montemurro N,Lawton MT. Management of a ruptured posterior inferior cerebellar artery(PICA)aneurysm with PICA-PICA in situ bypass and trapping:3-dimensional operative video[J].Oper Neurosurg(Hagerstown),2017,13(3):400.
    [15]Fukuda H,Evins AI,Iwasaki K,et al. The role of alternative anastomosis sites in occipital artery-posterior inferior cerebellar artery bypass in the absence of the caudal loop using the far-lateral approach[J]. J Neurosurg,2017,126(2):634-644.
    [16]Ota N,Tanikawa R,Eda H,et al. Radical treatment for bilateral vertebral artery dissecting aneurysms by reconstruction of the vertebral artery[J]. J Neurosurg,2016,125(4):953-963.