Ge_(25)Sb_(10)Se_(65-x)S_x硫系玻璃的光学和热力学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Optical and Thermal Properties of Ge_(25)Sb_(10)Se_(65-x)S_x Chalcogenide Glasses
  • 作者:尹宁宁 ; 常芳娥 ; 许军 ; 坚增运 ; 扬子江
  • 英文作者:YIN Ningning;CHANG Fang'e;XU Junfeng;JIAN Zengyun;YANG Zijiang;Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices,Xi'an Technological University;
  • 关键词:硫系玻璃 ; 红外透过率 ; 特征温度 ; 热膨胀系数
  • 英文关键词:chalcogenide glass;;infrared transmittance;;characteristic temperature;;thermal expansion coefficient
  • 中文刊名:XAGY
  • 英文刊名:Journal of Xi’an Technological University
  • 机构:西安工业大学陕西省光电功能材料与器件重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:西安工业大学学报
  • 年:2019
  • 期:v.39;No.209
  • 基金:国家自然科学基金(51401156;51671151);; 陕西省科技新星项目(2016KJXX-87)
  • 语种:中文;
  • 页:XAGY201901010
  • 页数:6
  • CN:01
  • ISSN:61-1458/N
  • 分类号:57-62
摘要
为了探究同族元素S的含量对硒基玻璃性能的影响,文中通过熔融淬冷法制备了一系列Ge_(25)Sb_(10)Se_(65-x)S_x(x=1,5,10,15,20)四元硒基玻璃试样。针对所制备试样,采用X射线衍射仪进行了非晶态分析,利用傅里叶变换红外光谱仪测定了红外透过率,分别用差式扫描量热仪和热机械分析仪标定了试样的特征温度,并计算了热膨胀系数。进而根据实验数据分析了上述参数随硫含量变化的规律。实验结果表明:少量S含量对红外透过率影响不大,而较多S含量会导致玻璃红外透过率降低。五组玻璃红外截止波长为12.5μm,S元素的加入有利于消除4.08μm处Se-H峰,玻璃成玻性能良好。随玻璃试样中硫元素含量的增加,玻璃的特征温度(包括玻璃转变温度Tg、起始析晶温度Tx、析晶峰温度Tp、应变点Tstrain和退火点Tanneal)均呈现增加趋势;热膨胀系数从8.36×10-6 K-1、1.70×10~(-5)K~(-1)、1.71×10~(-5)K~(-1)、1.75×10~(-5)K~(-1)到1.63×10~(-5)K~(-1),呈现出先增大后减小的规律。
        In order to investigate the effect of the content of congeners S on the properties of seleniumbased chalcogenide glasses,a series of Ge_(25)Sb_(10)Se_(65-x)S_x(x=1,5,10,15,20)chalcogenide glasses were prepared by the melt quenching method.The amorphous state of the prepared glasses was analyzed with an X-ray diffractometer,their infrared transmittance was measured by fourier transform infrared spectroscopy,and their characteristic temperatures and the thermal expansion coefficients were obtained by the differential scanning calorimetry and the thermal mechanical analysis,respectively.Based on the experimental data,the variation of the parameters above with S content in the selenium-based chalcogenide glasses was analyzed.The experimental results show that a small amount of S has little effect on the infrared transmittance,while a large amount of S leads to a decrease in the infrared transmittance.The infrared cutoff wavelength is 12.5 μm.The addition of S helps to remove the absorption peak of Se-H bond at the wavelength of 4.08μm.And also the prepared glass samples gain good glass forming ability.With the increase of S content in the selenium-based chalcogenide glasses,the characteristic temperatures,including the glass transition temperature Tg,the initial crystallization temperature Tx,the crystallization peak temperature Tp,the strain point Tstrainand the annealing point Tanneal,show an increasing trend.The thermal expansion coefficient varies from 8.36×10-6 K-1,1.70×10~(-5)K~(-1),1.71×10~(-5)K~(-1),1.75×10~(-5)K~(-1) to 1.63×10~(-5)K~(-1),indicating a rule of increasing first and then decreasing.
引文
[1]乔北京,陈飞飞,黄益聪,等.Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究[J].物理学报,2015,64(15):154216-1.QIAO Beijing,CHEN Feifei,HUANG Yicong,et al.Third-order Optical Nonlinearity at Communication Wavelength and Spectral Characteristics of Ge-Se Based Chalcogenide Glasses[J].Acta Physica Sinica,2015,64(15):154216-1.(in Chinese)
    [2]坚增运,李姣姣,朱满,等.Ge25Se75玻璃的制备与性能研究[J].西安工业大学学报,2015,35(6):496.JIAN Zengyun,LI Jiaojiao,ZHU Man,et al.Preparation and Properties of Ge25Se75 Glass[J].Journal of Xi’an Technological University,2015,35(6):496.(in Chinese)
    [3]戴世勋,陈惠广,李茂忠,等.硫系玻璃及其在红外光学系统中的应用[J].红外与激光工程,2012,41(4):847.DAI Shixun,CHEN Huiguang,LI Maozhong,et al.Chalcogenide Glasses and Their Infrared Optical Applications[J].Infrared and Laser Engineering,2012,41(4):847.(in Chinese)
    [4]戴世勋,於杏燕,张巍,等.硫系玻璃光子晶体光纤研究进展[J].激光与光电子学进展,2011,48(9):090602-1.DAI Shixun,YU Xingyan,ZHANG Wei,et al.Research Progress of Chalcogenide Glass Photonic Crystal Fibers[J].Laser&Optoelectronics Progress,2011,48(9):090602-1.(in Chinese)
    [5]白瑜,廖志远,李华,等.硫系玻璃在现代红外热成像系统中的应用[J].中国光学,2014,7(3):449.BAI Yu,LIAO Zhiyuan,LI Hua,et al.Application of the Chalcogenide Glass in Modern Infrared Thermal Imaging Systems[J].Chinese Optics,2014,7(3):449.(in Chinese)
    [6]成虎,许军锋,常芳娥,等.Ge-Se-Sb硫系玻璃均匀性分析[J].西安工业大学学报,2016,36(12):989.CHENG Hu,XU Junfeng,CHANG Fang’e,et al.Study on Uniformity of Ge-Se-Sb Chalcogenide Glass[J].Journal of Xi’an Technological University,2016,36(12):989.(in Chinese)
    [7]WAKKAD M M,SHOKR E K,MOHAMED S H.Optical and Calorimetric Studies of Ge-Sb-Se Glasses[J].Journal of Non-Crystalline Solids,2000,265(1/2):157.
    [8]VZQUEZ J,BARREDA D G G,LPEZ-ALEMA-NY P L,et al.Levels of Thermal Stability in Some Glassy Alloys of the Ge-Sb-Se System by Differential Scanning Calorimetry[J].Journal of Alloys and Compounds,2005,390(1/2):94.
    [9]FARG E S M.OpticalProperties of Amorphous Ge30-x SbxS70Films[J].Optics and Laser Technology,2006,38(1):14.
    [10]PETIT L,CARLIE N,ADAMIETZ F,et al.Correlation Between Physical,Optical and Structural Properties of Sulfide Glasses in the System Ge-Sb-S[J].Materials Chemistry and Physics,2006(97):64.
    [11]CHU S S,LI F M,TAO H Z,et al.SbS3,Enhanced Ultrafast Third-Order Optical Nonlinearities of Ge-SChalcogenide Glasses at 820nm[J].Optical Materials,2008,31(2):193.
    [12]GHAYEBLOO M,REZVANI M,TAVOOSI M,et al.Effect of Replacement of Se by S on Structural and Physical Properties of Ge-Sb-As-Se-S Chalcogenide Glasses[J].Optical and Quantum Electronics,2017,49(8):276.
    [13]曹莹,聂秋华,徐铁峰,等.Ge-Sb-S-Se硫系玻璃的三阶非线性光学特性研究[J].光子学报,2010,37(S1):203.CAO Ying,NIE Qiuhua,XU Tiefeng,et al.Investigation of Third-order Nonlinear Optical Properties of Ge-Sb-S-Se Chalcogenide Glass[J].Acta Photonica Sinica,2010,37(S1):203.(in Chinese)
    [14]曹莹,聂秋华,徐铁峰,等.Ge28Sb6S(66-x)Sex玻璃系统光学特性与结构[J].光子学报,2010,39(7):1153.CAO Ying,NIE Qiuhua,XU Tiefeng,et al.Optical Properties and Structure of Ge28Sb6S(66-x)Sex Glasses[J].Acta Photonica Sinica,2010,39(7):1153.(in Chinese)
    [15]WANG R P,XU Q,LIU H T,et al.Structure andPhysical Properties of Ge15Sb20Se65-xSx Glasses[J].Journal of the American Ceramic Society,2017,101(1):201.
    [16]DIETZEL A.Glass Structure and Glass Properties[J].Glastechnische Berichte-Glass Scince and Technology,1968,22:41.