长基线GLONASS模糊度固定方法及实验分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis
  • 作者:安向东 ; 陈华 ; 姜卫平 ; 肖玉钢 ; 赵文
  • 英文作者:AN Xiangdong;CHEN Hua;JIANG Weiping;XIAO Yugang;ZHAO Wen;GNSS Research Center, Wuhan University;School of Geodesy and Geomatics, Wuhan University;Changjiang Spatial Information Technology Engineering Co Ltd(Wuhan);
  • 关键词:GLONASS ; 长基线 ; 无电离层组合模糊度固定 ; 频间偏差 ; 全球卫星导航定位系统
  • 英文关键词:GLONASS;;long baselines;;ionospheric free ambiguity resolution;;inter-frequency bias;;global navigation satellite system
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:武汉大学卫星导航定位技术研究中心;武汉大学测绘学院;长江空间信息技术工程有限公司(武汉);
  • 出版日期:2019-05-05
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家杰出青年科学基金(41525014);; 长江学者奖励计划;; 国家测绘地理信息局测绘基础研究项目(15-02-01)~~
  • 语种:中文;
  • 页:WHCH201905009
  • 页数:9
  • CN:05
  • ISSN:42-1676/TN
  • 分类号:61-69
摘要
格洛纳斯(Global Navigation Satellite System, GLONASS)采用了频分多址技术,接收机在接收不同卫星信号时会产生频间偏差,阻碍了GLONASS长基线模糊度固定,限制了其定位定轨的精度。提出了一种新的GLONASS模糊度固定方法。该方法基于全球电离层格网产品,根据频间偏差率的变化范围,采用搜索的方法和线性模型去除相位频间偏差对宽窄巷模糊度的影响,实现了GLONASS无电离层组合模糊度固定。利用平均基线长度为763 km的全球卫星导航系统(Global Navigation Satellite System, GNSS)服务站实验网数据对该方法进行分析,结果表明:连续30 d内,模糊度固定成功率最高为95.4%,最低为88.8%,平均为93.45%;模糊度固定后,北(north, N)、东(east, E)、高(up, U)各分量重复性和均方根误差(root mean square error, RMSE)值均得到不同程度的改善,E分量重复性和RMSE值分别改善了20%和14%,改善效果最为明显。
        Frequency division multiplexing of GLONASS signals causes inter-frequency bias(IFB) in the receiving equipment. IFB significantly prevents GLONASS ambiguity resolution and limits the accuracy and reliability of GLONASS positioning and orbit determination. Therefore, we present a new method for GLONASS ambiguity resolution. Firsly, it weakens the influence of inter-frequency code bias, and wide-lane ambiguities are calculated directly based on the wide-lane combined observations. Then, according to the range of inter-frequency phase bias rate, a step-by-step search schedule is designed to remove the impacts of inter-frequency phase bias on wide-lane and narrow-lane ambiguities. Finally, the ambiguity resolution can be achieved successfully. An IGS experiment network is carried out to verify the validity of this method. Experimental results show that the maximum, minimum and mean success rate of fixed ambiguities within the month were 95.4%, 88.8% and 93.45%, respectively. After ambiguity resolution, the repeatability and root mean square error(RMSE) of N, E, U components were improved; especially for E component, the repeatability and RMSE were improved 20% and 14%, respectively. This proves the validity of this method.
引文
[1]Leick A,Rapoport L,Tatarnikov D.GPS Satellite Surveying[M].Hoboken:John Wiley and Sons,1995
    [2]Pratt M,Burke B,Misra P.Single-Epoch Integer Ambiguity Resolution with GPS-GLONASS L1-L2Data[J].Approach Control,1999,11(69):691-699
    [3]Wang J.An Approach to GLONASS Ambiguity Resolution[J].Journal of Geodesy,2000,74(5):421-430
    [4]Zhang Yongjun,Xu Shaoquan,Wang Zemin,et al.Ambiguity Processing Approach in Combined GPS/GLONASS Positioning[J].Geomatics and Information Science of Wuhan University,2001,26(1):58-63(张永军,徐绍铨,王泽民,等.GPS/GLONASS组合定位中模糊度的处理[J].武汉大学学报?信息科学版,2001,26(1):58-63)
    [5]Wanninger L.Carrier-Phase Inter-Frequency Biases of GLONASS Receivers[J].Journal of Geodesy,2012,86(2):139-148
    [6]Sleewagen J,Simsky A,Wilde W D,et al.Demystifying GLONASS Inter-Frequency Carrier Phase Biases[J].Inside GNSS,2012,7(3):57-61
    [7]Banville S,Collins P,Lahaye F.Concepts for Undifferenced GLONASS Ambiguity Resolution[C].ION GNSS the 26th International Technical Meeting of the Satellite Division,Nashville,TN,USA,2013
    [8]Reussner N,Wanninger L.GLONASS Inter-Frequency Biases and Their Effects on RTK and PPPCarrier-Phase Ambiguity Resolution[C].The 24th International Technical Meeting of the Satellite Division of the Institute of Navigation,Portland,Oregon,USA,2011
    [9]Shi C,Yi W,Song W,et al.GLONASS Pseudorange Inter-Channel Biases and Their Effects on Combined GPS/GLONASS Precise Point Positioning[J].GPS Solutions,2013,17(4):439-451
    [10]Tian Y,Ge M,Neitzel F.Particle Filter-Based Estimation of Inter-Frequency Phase Bias for RealTime GLONASS Integer Ambiguity Resolution[J].Journal of Geodesy,2015,89(11):1 145-1 158
    [11]Geng J,Bock Y.GLONASS Fractional-Cycle Bias Estimation Across Inhomogeneous Receivers for PPP Ambiguity Resolution[J].Journal of Geodesy,2016,90(4):379-396
    [12]Cai C,Gao Y.Modeling and Assessment of Combined GPS/GLONASS Precise Point Positioning[J].GPS Solutions,2013,17(2):223-236
    [13]Ge M,Gendt G,Rothacher M,et al.Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning(PPP)with Daily Observations[J].Journal of Geodesy,2008,82(7):389-399
    [14]Hernández-Pajares M,Juan J M,Sanz J,et al.The IGS VTEC Maps:A Reliable Source of Ionospheric Information Since 1998[J].Journal of Geodesy,2009,83(3/4):263-275
    [15]Liu J,Ge M.PANDA Software and Its Preliminary Result of Positioning and Orbit Determination[J].Wuhan University Journal of Natural Sciences,2003,8(2):603-609
    [16]Dong D N,Bock Y.Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J].Journal of Geophysical Research:Solid Earth,1989,94(B4):3 949-3 966