2.25Cr1Mo钢动态再结晶物理冶金模型的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physical metallurgical model for dynamic recrystallization of 2.25Cr1Mo steel
  • 作者:贾红帅 ; 李权 ; 李激光 ; 杨钢
  • 英文作者:JIA Hong-shuai;LI Quan;LI Ji-guang;YANG Gang;School of Material and Metallurgy,University of Science and Technology Liaoning;Institute for Special Steel,Central Iron and Steel Research Institute;
  • 关键词:2.25Cr1Mo钢 ; 物理冶金模型 ; 动态再结晶临界应变 ; 再结晶分数
  • 英文关键词:2.25Cr1Mo steel;;physical metallurgical model;;dynamic recrystallization critical strain;;recrystallization fraction
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:辽宁科技大学材料与冶金学院;钢铁研究总院特殊钢研究所;
  • 出版日期:2019-01-15
  • 出版单位:钢铁研究学报
  • 年:2019
  • 期:v.31
  • 基金:重点研发计划资助项目(2016YFB0300203)
  • 语种:中文;
  • 页:IRON201901008
  • 页数:8
  • CN:01
  • ISSN:11-2133/TF
  • 分类号:60-67
摘要
采用Gleeble-1500D对2.25Cr1Mo钢在温度950~1200℃,应变速率为0.01~10s-1,变形量为60%下进行热压缩试验,探究不同变形温度、不同应变速率对2.25Cr1Mo钢动态再结晶行为的影响,并建立动态再结晶临界应变及动态再结晶分数模型。结果表明,2.25Cr1Mo钢在高温大应变速率下更容易发生动态再结晶,得到了2.25Cr1Mo钢在发生动态再结晶时的变形激活能、临界变形量以及动态再结晶分数模型,构建了2.25Cr1Mo钢本构方程,并建立了满足有限元软件数据接口的动态再结晶物理冶金模型,为大锻件锻造成型微观模拟提供基础条件。
        The hot compression tests of 2.25 Cr1 Mo steel at 950-1 200℃,0.01-10 s-1,and deformation of 60%were carried out on a Gleeble-1500 Dsimulator.The effects of deformation temperature and strain rate on the dynamic recrystallization of 2.25 Cr1 Mo steel were investigated.The models for dynamic recrystallization critical strains and dynamic recrystallization fraction were established.The results show that 2.25 Cr1 Mo steel is more likely to undergo dynamic recrystallization at high temperature and high strain rate.The deformation activation energy and critical strains in dynamic recrystallization as well as dynamic recrystallization fraction model of2.25 Cr1 Mo steel were obtained.The constitutive equation of 2.25 Cr1 Mo steel was constructed and the dynamic recrystallization physical metallurgical model of finite element software data interface was established.The model provides the basic conditions for the forging microscopic simulation of large forgings.
引文
[1]潘相相.钠冷快堆蒸汽发生器主材研究进展[J].世界有色金属,2017(9):181.(Pan X X.Development of steam generator main materials for fast reactor[J].World Nonferrous Metals,2017(9):181.)
    [2] Peng T,Zhang C,Yang Z G,et al.Evolution and coarsening of carbides in 2.25Cr-1Mo steel weld metal during high temperature tempering[J].Journal of Iron and Steel Research(International),2010,17(5):74.
    [3]莫春立,栾义坤,凌进,等.2.25Cr1Mo钢大型筒体锻件差温热处理过程研究[J].金属热处理,2005(12):81.(Mo C L,Luan Y K,Ling J,et al.Research on differential temperature heat treatment process for 2.25Cr1Mo steel heavy cylindric forging[J].Heat Treatment of Metals,2005(12):81.)
    [4]高照海,唐郑磊,许少普,等.特厚临氢设备用钢12Cr2Mo1R(SA387Gr.22Cl.2)的试制[J].钢铁研究学报,2014,26(2):56.(Gao Z H,Tang Z L,Xu S P,et al.Trial Production of12Cr2Mo1R(SA387Gr.22C1.2)heavy thick steel plate for hydrogen vessels[J].Journal of Iron and Steel Research,2014,26(2):56.)
    [5]李贵军,王乐勤.2.25Cr1Mo钢的中温疲劳裂纹扩展行为研究和加氢反应器的安全分析[J].压力容器,2004(7):18.(Li G J,Wang L Q.Research on fatigue crack growth behavior of 2.25Cr1Mo at medium temperature and safety evaluation of hydrogenation reactor[J].Pressure Vessel Technology,2004(7):18.)
    [6]崔金栋.7050铝合金大锻件锻造工艺仿真与再结晶组织模拟[D]//长沙:中南大学,2006.(Cui J D.Forging Process Simulation and Recrystallization Microstructure Simulation of 7050 Aluminum Alloy Forgings[D]//Changsha:Central South University,2006.)
    [7]崔振山,陈文,陈飞,等.大锻件控性锻造过程的计算机模拟技术[J].机械工程学报,2010,46(11):2.(Cui Z S,Chen W,Chen F,et al.Computer modeling of property-controlled forging process for heavy forgings[J].Journal of Mechanical Engineering,2010,46(11):2.)
    [8]许飞霞.大型圆筒形锻件高温锻造过程数值模拟[D]//上海:上海交通大学,2008.(Xu F X.The Simulation of Heavy Cylinder Forging at High Temperature[D]//Shanghai:ShanghaiJiaotong University,2008.)
    [9]张雷,韩双,秦鹤勇,等.一种反应器用12Cr2Mo1钢的热变形行为及热加工图[J].热加工工艺,2017,46(9):48.(Zhang L,Han S,Qin H Y,et al.Hot deformation behavior and hot processing map of 12Cr2Mo1steel for a reactor[J].Hot Working Technology,2017,46(9):48.)
    [10] Zener C,Hollomon J H.Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(1):22.
    [11]杨志强,刘勇,田保红,等.TiC/Cu-Al2O3复合材料动态再结晶临界条件[J].复合材料学报,2014,31(4):963.(Yang Z Q,Liu Y,Tian B H,et al.Critical conditions of dynamic recrystallization of TiC/Cu-Al2O3composites[J].Acta Materiae Compositae Sinica,2014,31(4):963.)
    [12]曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007(1):35.(Cao J R,Liu Z D,Cheng S C,et al.Influences of strain rate and deformation temperature on flow stress and critical dynamic recrystallization of heat resistant steel T122[J].Acta Metallurgica Sinica,2007(1):35.)
    [13] Rollett A D,Kocks U F.A review of the stages of work hardening[J].Solid State Phenomena,1993,35-36(36):1.
    [14] Poliak E I,Jonas J J.A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J].Acta Materialia,1996,44(1):127.
    [15] Poliak E I,Jonas J J.Initiation of dynamic recrystallization in constant strain rate hot deformation[J].ISIJ International,2003,43(5):684.
    [16] Senthilkumar V,Balaji A,Narayanasamy R.Analysis of hot deformation behavior of Al 5083–TiC nanocomposite using constitutive and dynamic material models[J].Materials and Design,2012,37:102.
    [17] Sellars C M,Mctegart W J.On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136.
    [18]胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003,15(3):60.(Hu Z F,Yang Z G.Development and application of high chromium heat-resistant steel[J].Journal of Iron and Steel Research,2003,15(3):60.)
    [19]陈振湘,许晓嫦,王斌,等.T91钢的高温塑性变形及动态再结晶行为[J].北京科技大学学报,2012,34(3):298.(Chen Z X,Xu X C,Wang B,et al.Plastic deformation and dynamic recrystallization of T91steel at high temperature[J].Journal of University of Science and Technology Beijing,2012,34(3):298.)
    [20]翟月雯,钟志平,金泉林.P91合金钢热变形力学行为的试验[J].塑性工程学报,2012,19(3):88.(Zhai Y W,Zhong Z P,Jin Q L.Experimental research on mechanical property of P91under high temperature thermal deformation[J].Journal of Plasticity Engineering,2012,19(3):88.)
    [21] Beynon J H,Sellars C M.Modelling microstructure and its effects during multipass hot rolling[J].Transactions of the Iron and Steel Institute of Japan,1992,32(3):359.
    [22] Sellars C M.Modelling microstructural development during hot rolling[J].Metal Science Journal,1990,6(11):1072.