大型蚤对五价砷抗性选择的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rapid Evolution of Resistance to As(Ⅴ) in Daphnia magna
  • 作者:李莉霞 ; 李丹 ; 高蜜 ; 穆磊 ; 陈红星 ; 谢凌天
  • 英文作者:Li Lixia;Li Dan;Gao Mi;Mu Lei;Chen Hongxing;Xie Lingtian;Key Laboratory of Pollution Ecology and Environmental Engineering,Institute of Applied Ecology,Chinese Academy of Sciences;
  • 关键词:五价砷 ; 大型蚤 ; 抗性 ; 多代选择 ; 生物适应性
  • 英文关键词:As(Ⅴ);;Daphnia magna;;resistance;;multiple generations;;fitness
  • 中文刊名:STDL
  • 英文刊名:Asian Journal of Ecotoxicology
  • 机构:中国科学院沈阳应用生态研究所污染生态与环境工程重点实验室;
  • 出版日期:2016-06-15
  • 出版单位:生态毒理学报
  • 年:2016
  • 期:v.11
  • 基金:国家自然科学基金面上项目(31270549);; 中国科学院“百人计划”项目
  • 语种:中文;
  • 页:STDL201603027
  • 页数:6
  • CN:03
  • ISSN:11-5470/X
  • 分类号:240-245
摘要
金属污染对栖息在该环境中的生物具有强大的选择力,生物若能进化出对该金属的抗性则能在该环境中生存下去,否则将会灭绝。人工模拟的选择方法可以用来研究生物对金属的抗性进化。为了探索大型蚤(Daphnia magna)是否能进化出对五价砷(As(Ⅴ))的抗性,采用多代选择的方法对其进行了As(Ⅴ)诱导的抗性响应研究。依据本实验室大型蚤对As(Ⅴ)的96h半致死浓度(4.25 mg·L~(-1)),试验选取As(Ⅴ)亚致死浓度(8.0 mg·L~(-1))对大型蚤进行选择,每代选择30%~50%对As(Ⅴ)耐受性高的大型蚤转移至不加As(Ⅴ)环境下继续繁殖得到下一代,并重复该选择过程至获得第五代(F5)终止试验。以选择组F5代及对照组F5代大型蚤为测试目标,考察其在As(Ⅴ)继续暴露下的存活时间以期获得具As(Ⅴ)抗性大型蚤。结果显示,在F5代中,选择组大型蚤在As(Ⅴ)(8.0 mg·L~(-1))暴露下的存活时间相比对照组显著延长175%,证实了大型蚤对As(Ⅴ)的进化抗性。进一步研究发现,选择组F5代与对照组F5代相比繁殖力下降19.96%,平均每批产仔量降低15.71%。这表明经过五代人工选择后,大型蚤能够进化出对As(Ⅴ)的抗性,而这种抗性的进化伴随以生物适应性参数的降低为代价。另外,大型蚤对这种抗性的获得机制(对As(Ⅴ)的累积和脱毒机制)仍需进一步研究。
        Metal contamination can exert a strong selection force on the populations inhabiting in the metal contaminated environments. The populations will either survive in the contaminated environments by evolving the resistance to the metal( s) or go extinction in such contaminated environments. Artificial selection approach can be used to study the potential of evolution of resistance to metals in organisms. To understand whether Daphnia magna can evolve the resistance to arsenate( As(Ⅴ)),an artificial selection was used to study responses of daphnids to the selection of As(Ⅴ) resistance in a multi-generation selection regime. Based on the 96-h LC50 of As(Ⅴ)(4. 25 mg·L~(-1)),D. magna were exposed to a sublethal concentration(8. 0 mg·L~(-1)) of As(V). In each generation,survivors from the As(Ⅴ) exposure( i. e.,As-tolerant individuals)( approximately 30%-50%) were allowed to produce offspring in the next generation. The artificial selection was repeated for 5 generations. The resistance to As(Ⅴ) wasquantified and fitness costs associated with the resistance to As(Ⅴ) were evaluated in the F5 generation. The results showed that the selected group had a longer(175%) time to death than that of control,implying that daphnids might have evolved the resistance to As(Ⅴ). Comparison of the data on the fitness components showed that the As-resistant daphnids had a reduced fecundity(19. 96%) and a decreased average brood size(15. 71%) than the control daphnids. It was concluded that the daphnids could have evolved the resistance to As(Ⅴ) exposure even after five generations of artificial selection. And the rapid evolution of resistance to As(Ⅴ) in D. magna might be associated with fitness costs. Further research is needed to elucidate the underlying mechanisms( including accumulation and the detoxification of As(Ⅴ)) for this resistance in D. magna.
引文
[1]Mc Kenzie J A.Ecological and Evolutionary Aspects of Insecticide Resistance[M].San Diego,CA,USA:Academic,1996:1-185
    [2]Wilson J B.The cost of heavy-metal tolerance-An example[J].Evolution,1988,42(2):408-413
    [3]Shirley M D F,Sibly R M.Genetic basis of a betweenenvironment trade-off involving resistance to cadmium in Drosophila melanogaster[J].Evolution,1999,53(3):826-836
    [4]Klerks P L,Levinton J S.Effects of Heavy Metals in A Polluted Aquatic Ecosystem[M]//Levin S A,Harwell M A,Kelly J R,et al.eds.Ecotoxicology:Problems and Approaches.New York,USA:Springer-Verlag,1989a:41-67
    [5]Klerks P L,Levinton J S.Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site[J].Biological Bulletin,1989b,176(2):135-141
    [6]Xie L T,Klerks P L.Responses to selection for cadmium resistance in the least killifish,Heterandria formosa[J].Environmental Toxicology and Chemistry,2003,22(2):313-320
    [7]Xie L T,Klerks P L.Fitness cost of resistance to cadmium in the least killifish(Heterandria formosa)[J].Environmental Toxicology and Chemistry,2004,23(6):1499-1503
    [8]Rahman M A,Hasegawa H,Lim R P.Bioaccumulation,biotransformation and trophic transfer of arsenic in the aquatic food chain[J].Environmental Research,2012,116:118-135
    [9]Wang Z,Luo Z,Yan C.Accumulation,transformation,and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J].Environmental Science and Pollution Research,2013,20(10):7286-7295
    [10]高世荣,修瑞琴.大型溞对氰渣、锑冶炼碱渣的毒性评价[J].环境科学,1991,12(6):32-33,11Gao S R,Xiu R Q.Toxicity evaluation of cyanogen wastes and antimony smelting alkali wastes by Daphnia magna Straus[J].Chinese Journal of Environmental Science,1991,12(6):32-33,11(in Chinese)
    [11]尹大强,陆根法,孙爱龙,等.农药多效唑和烯效唑对大型(Daphnia magna)繁殖和发育的影响[J].南京大学学报:自然科学版,1997,33(4):556-561Yin D Q,Lu G F,Sun A L,et al.The chronic effects of pesticides of paclobutrazol and suniseven on reproduction,growth and survival in Daphnia magna[J].Journal of Nanjing University:Natural Sciences,1997,33(4):556-561(in Chinese)
    [12]汤保华,祝凌燕,周启星.五溴联苯醚(Penta-BDE)与重金属对水生无脊椎动物大型蚤Daphnia magna存活及其繁殖的联合毒性影响[J].中山大学学报:自然科学版,2010,49(6):93-99Tang B H,Zhu L Y,Zhou Q X.Joint effect of PentaBDE and heavy metals on aquatic invertebrate Daphnia magna survival and its reproduction[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2010,49(6):93-99(in Chinese)
    [13]叶伟红,刘维屏.大型蚤毒理试验应用与研究进展[J].环境污染治理技术与设备,2004,5(4):4-7Ye W H,Liu W P.Application and study progress of toxicity test of Daphnia magna[J].Techniques and Equipment for Environmental Pollution Control,2004,5(4):4-7(in Chinese)
    [14]Miao A J,Wang N X,Yang L Y,et al.Accumulation kinetics of arsenic in Daphnia magna under different phosphorus and food density regimes[J].Environmental Toxicology and Chemistry,2012,31(6):1283-1291
    [15]Ward T J,Robinson W E.Evolution of cadmium resistance in Daphnia magna[J].Environmental Toxicology and Chemistry,2005,24(9):2341-2349
    [16]Dietrich S,Ploessl F,Bracher F,et al.Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna-A multigenerational study[J].Chemosphere,2010,79(1):60-66
    [17]杨晓凡,陆光华,刘建超,等.环境相关浓度下的药物对大型蚤的多代慢性毒性[J].中国环境科学,2013,33(3):538-545Yang X F,Lu G H,Liu J C,et al.Multigenerational chronic effects of pharmaceuticals on Daphnia magna at environmentally relevant concentrations[J].China Environmental Science,2013,33(3):538-545(in Chinese)
    [18]U.S.Environmental Protection Agency.Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms.Fifth Edition.EPA-821-R-02-012[S].Washington DC:Office of Water,2002
    [19]Valenti T W,Chaffin J L,Cherry D S,et al.Bioassessment of an Appalachian headwater stream influenced by an abandoned arsenic mine[J].Archives of environmental Contamination and Toxicology,2005,49(4):488-496
    [20]Enserink E L,Maasdiepeveen J L,Vanleeuwen C J.Combined effects of metals-An ecotoxicological evaluation[J].Water Research,1991,25(6):679-687
    [21]Guan R,Wang W X.Cd and Zn uptake kinetics in Daphnia magna in relation to Cd exposure history[J].Environmental Science&Technology,2004,38(22):6051-6058
    [22]张融,范文宏,唐戈,等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J].生态毒理学报,2008,3(3):286-290Zhang R,Fan W H,Tang G,et al.A preliminary study on joint toxic effects of Cd and Zn on Daphnia magna[J].Asian Journal of Ecotoxicology,2008,3(3):286-290(in Chinese)
    [23]Yoo J,Ahn B,Oh J J,et al.Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa[J].Journal of Hazardous Materials,2013,260:1042-1049