长链非编码RNA与胰岛素抵抗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on lncRNA relation of insulin resistance
  • 作者:盖李乐 ; 王俊杰 ; 袁成福
  • 英文作者:GAI Liyue;WANG Junjie;YUAN Chengfu;College of Medical Science, Three Gorges University;Affiliated Renhe Hospital of China Three Gorges University;
  • 关键词:长链非编码RNA ; 胰岛素抵抗 ; 代谢性疾病
  • 英文关键词:long non-coding RNA;;insulin resistance;;metabolic diseases
  • 中文刊名:SMHX
  • 英文刊名:Chemistry of Life
  • 机构:三峡大学医学院;三峡大学附属仁和医院;
  • 出版日期:2019-06-15
  • 出版单位:生命的化学
  • 年:2019
  • 期:v.39;No.228
  • 基金:国家自然科学基金项目(81773959)
  • 语种:中文;
  • 页:SMHX201903025
  • 页数:7
  • CN:03
  • ISSN:31-1384/Q
  • 分类号:169-175
摘要
长链非编码RNA(long non-coding RNA,lncRNA)是一类长度大于200个核苷酸(nt)、无开放阅读框而不具有蛋白质编码功能的RNA。随着对基因组研究的不断深入,大量研究显示,多种lncRNA与胰岛素抵抗密切相关。lncRNA可从多种路径靶向调控胰岛素相关基因的表达,从而影响胰岛素的合成、分泌以及胰岛素抵抗的形成。当今代谢性疾病患者日益增多,胰岛素抵抗是代谢性疾病的重要表现之一,也是主要危险因素之一,从lncRNA研究中找到改善胰岛素抵抗的有效途径,为我们治疗这一类疾病带来了新思路。围绕这一主题,本文对lncRNA和胰岛素抵抗之间的关系进行了综述。
        Long non-coding RNA(lncRNA) is a class of RNA with a length of more than 200 nucleotides(nt)and no open reading frame without protein coding function. With the deepening of genome research, a large number of studies have shown that a variety of lncRNAs are closely related to insulin resistance, lncRNA can regulate the expression of insulin-related genes from a variety of pathways, thereby affecting the synthesis and secretion of insulin and the formation of insulin resistance. With the increasing number of patients with metabolic diseases, insulin resistance is one of the important manifestations of metabolic diseases and one of the main risk factors, finding effective ways to improve insulin resistance from lncRNA has brought new ideas for treating this type of disease. In this paper, the relationship between lncRNA and insulin resistance is reviewed.
引文
[1]Szcze?niak MW, Makalowska I. LncRNA-RNA interactions across the human transcriptome. PLoS One, 2016,11(3):e0150353
    [2]Lanzafame M, Bianco G, Terracciano LM, et al. The role of long non-coding RNAs in hepatocarcinogenesis. Int J Mol Sci, 2018, 19(3):682
    [3]Mowel WK, Kotzin JJ, Mccright SJ, et al. Control of immune cell homeostasis and function by lncRNAs. Trends Immunol, 2018, 39(1):55-69
    [4]Gao Y, Wang T, Li Y, et al. Lnc-chop promotes immunosuppressive function of myeloid-derived suppressor cells intumorandinflammatoryenvironments.JImmunol,2018, 200(8):2603-2614
    [5]Sana J, Faltejskova P, Svoboda M, et al. Novel classes of non-coding RNAs and cancer. J Transl Med, 2012, 10:103
    [6]Klattenhoff CA, Scheuermann JC, Surface LE, et al.Braveheart, a long noncoding RNA required for cardiovascularlineagecommitment.Cell,2013,152(3):570-583
    [7]Qi M, Zhou Q, Zeng W, et al. Analysis of long non-coding RNA expression of lymphatic endothelial cells in response to type 2 diabetes. Cell Physiol Biochem, 2017,41(2):466-474
    [8]Qatanani M, Lazar MA. Mechanisms of obesity-associated insulinresistance:manychoicesonthemenu.Genes Dev, 2007, 21(12):1443-1455
    [9]Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385):339-346
    [10]GiroudM,ScheidelerM.Longnon-codingRNAsin metabolic organs and energy homeostasi. Int J Mol Sci,2017, 18(12):2578
    [11]Yan B, Wang ZH. Long noncoding RNA:its physiological and pathological roles. DNA Cell Biol, 2012, 31(1):34-41
    [12]Wang CG, Wang LZ, Ding Y, et al. LncRNA structural characteristics in epigenetic regulation. Int J Mol Sci,2017, 18(12):2659
    [13]Mercer TR,MattickJS.Structureandfunctionoflong noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol, 2013, 20(3):300-307
    [14]Kashi K, Henderson L, Bonetti A, et al. Discovery and functional analysis of lncRNAs:methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta, 2016, 1859(1):3-15
    [15]Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisenseRNAcontrolsUchl1translationthroughan embedded SINEB2 repeat. Nature, 2012, 491(7424):454-457
    [16]Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010, 39(6):925-938
    [17]Zhao XY, Lin JD. Long noncoding RNAs:a new regulatory code in metabolic control. Trends Biochem Sci,2015, 40(10):586-596
    [18]Bensellam M, Van Lommel L, Overbergh L, et al. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate-and high-glucose concentrations. Diabetologia, 2009, 52(3):463-476
    [19]Kang S, Tsai LT, Rosen ED. Nuclear mechanisms of insulin resistance. Trends Cell Biol, 2016, 26(5):341-351
    [20]Chen S, Villalta SA, Agrawal DK. FOXO1 mediates vitamin D deficiency-induced insulin resistance in skeletal muscle. J Bone Miner Res, 2016, 31(3):585-595
    [21]Lee Y, Chakraborty S, Meininger CJ, et al. Insulin resistance disrupts cell integrity, mitochondrial function and inflammatory signaling in lymphatic endothelium. Microcirculation, 2018, 19:e12492
    [22]Genazzani AD, Shefer K, Della Case D, et al. Modulatory effects of alpha-lipoic acid(ALA)administration on insulin sensitivity in obese PCOS patients. J Endocrinol Invest, 2018, 41(5):583-590
    [23]Folch J, Ettcheto M, Busquets O, et al. The implication of the brain insulin receptor in late onset alzheimer's disease dementia. Pharmaceuticals(Basel), 2018, 11(1)
    [24]Melvin A, O'Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev, 2018,50:60-67
    [25]Gu G, Wells JM, Dombkowski D, et al. Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development, 2004, 131(1):165-179
    [26]Moran I, Akerman I, van de Bunt M, et al. Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab, 2012, 16(4):435-448
    [27]Arnes L, Akerman I, Balderes DA, et al.βlinc1 encodes a long noncoding RNA that regulates islet beta-cell formation and function. Genes Dev, 2016, 30(5):502-507
    [28]Yin D, Zhang EB, You LH, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreaticβcells. Cell Physiol Biochem, 2015,35(5):1892-1904
    [29]Jin F, Wang N, Zhu Y, et al. Downregulation of long noncoding RNA Gas5 affects cell cycle and insulin secretion in mouse pancreaticβcells. Cell Physiol Biochem, 2017,43(5):2062-2073
    [30]Zhu M, Wei Y, Geissler C, et al. Hyperlipidemia-induced microRNA-155-5p improvesβ-cell function by targeting Mafb. Diabetes, 2017, 66(12):3072-3084
    [31]Yan C, Chen J, Chen N. Long noncoding RNA MALAT1promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep,2016, 6:22640
    [32]Hiratani K, Haruta T, Tani A, et al. Roles of mTOR and JNK in serine phosphorylation, translocation, and degradation of IRS-1. Biochem Biophys Res Commun, 2005,335(3):836-842
    [33]Chen J, Ke S, Zhong L, et al. Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol, 2018, 152:94-103
    [34]Oka S, Alcendor R, Zhai P, et al. PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab,2011, 14(5):598-611
    [35]Wang Y, Hu Y, Sun C, et al. Down-regulation of Risa improves insulin sensitivity by enhancing autophagy.FASEB J, 2016, 30(9):3133-3145
    [36]Zhu X, Wu Y, Zhou J, et al. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun,2016, 469(2):319-325
    [37]YouL, WangN, YinD,etal.Downregulationoflong noncoding RNA Meg3 affects insulin synthesis and secretion in mouse pancreatic beta cells. J Cell Physiol,2016, 231(4):852-862
    [38]Liu S, Sheng L, Miao H, et al. SRA gene knockout protects against diet-induced obesity and improves glucose tolerance. J Biol Chem, 2014, 289(19):13000-13009
    [39]WangJ, Yang W,ChenZ,etal.LongnoncodingRNA lncSHGL recruits hnRNPA1 to suppress hepatic gluconeogenesis and lipogenesis. Diabetes, 2018, 67(4):581-593