空气源热泵系统无霜化及除霜方法概述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Frost-free and Defrost Methods for Air-source Heat Pump Systems
  • 作者:沈九兵 ; 李自强 ; 邢子文 ; 俞越 ; 葛美才
  • 英文作者:Shen Jiubing;Li Ziqiang;Xing Ziwen;Yu Yue;Ge Meicai;School of Energy and Power,Jiangsu University of Science and Technology;School of Energy and Power Engineering,Xi'an Jiaotong University;Nantong Huaxin Central Air Conditioning Co.,Ltd.;
  • 关键词:空气源热泵 ; 结霜 ; 除霜 ; 相变材料 ; 蓄热
  • 英文关键词:air-source heat pump;;frosting;;defrost;;phase change material;;heat storage
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:江苏科技大学能源与动力学院;西安交通大学能源与动力工程学院;南通华信中央空调有限公司;
  • 出版日期:2019-03-06 15:41
  • 出版单位:制冷学报
  • 年:2019
  • 期:v.40;No.186
  • 语种:中文;
  • 页:ZLXB201902012
  • 页数:11
  • CN:02
  • ISSN:11-2182/TB
  • 分类号:88-97+107
摘要
空气源热泵因性能稳定、使用方便等特点在房间供暖与空调等领域得到广泛应用,冬季室外换热器表面结霜和除霜是影响其系统性能的主要因素。本文概括了空气源热泵系统的结霜条件、无霜化以及各类热力与非热力除霜方法,重点阐述了采用相变蓄热装置的各种热泵系统及除霜方法,对研究报导中应用的相变材料、蓄热换热器结构进行综述。最后对实现空气源热泵产品的无霜化或除霜高效化和持续供热的研究方向进行展望:可靠的吸附材料及其再生方法研发是通过干燥方法破坏除霜条件的技术需求;高压电场和超声波除霜方法需进一步完善,提高稳定性和经济性;蓄热除霜有很大的市场潜力,但需优化系统及蓄热换热器设计,并深入相变材料的研究。
        Air-source heat pumps have been widely used for room heating and air conditioning because of their stable performance and easy installation. The greatest performance limitation is the frosting and defrosting problem of the out-door heat exchanger during winter. This study presents a review of the frosting conditions, frost-free method, and different defrosting methods for air-source heat pump systems. In particular, the system and principles of the application of heat storage technology for heat pump defrosting are summarized. The applied phase change material(PCM) and structures of heat storage exchangers based on different studies are also presented in this work. Finally, future research directions for realizing frost-free or effective defrosting and continuous heating of air-source heat pump products are discussed. These include the development of reliable adsorption materials and regeneration methods to overcome problems posed by frost. Methods of high-voltage field and ultrasonic defrosting must be further considered to improve stability and economy. The application of PCM for defrosting has good market prospects, but the design of heat pump systems and the structure of PCM exchangers must be optimized, and PCM should be further studied.
引文
[1] 陆心怡,徐佳琦. 空气源热泵降湿防结霜方法分析[J]. 科技风,2017(10):163-164. (LU Xinyi, XU Jiaqi. Analysis of the defrost methods for air source heat pumps[J]. Technology Wind, 2017(10): 163-164. )
    [2] 曲明璐,余倩,李封澍,等. 空气源热泵除霜问题的研究现状及进展[J]. 建筑节能,2016,44(8):1-5. (QU Minglu, YU Qian, LI Fengshu, et al. Research and progress of defrosting for air source heat pumps[J]. Journal of Building Energy Saving, 2016,44 (8): 1-5. )
    [3] 王剑峰,陈光明. 空气源热泵冬季结霜特性研究[J]. 制冷,1997,18(1):24-27. (WANG Jianfeng, CHEN Guangming. Study of frosting characteristics of air source heat pumps winter heating[J]. Refrigeration, 1997,18 (1): 24-27. )
    [4] 井上宇市. 空气调节手册[M]. 范存养,钱以明,等译. 北京:中国建筑工业出版社,1986. (INOUE Uichi. Air conditioning manual [M]. FAN Cunyang, QIAN Yiming, et al, translated. Beijing: China Building Industry Press, 1986. )
    [5] 张家正. 空气源热泵除霜方法的研究现状及展望[J]. 建筑热能通风空调,2017,36(8):42-46. (ZHANG Jiazheng. Present state and prospect of defrosting method for air source heat pump[J]. Building Energy & Environment, 2017,36(8): 42-46. )
    [6] WANG S W, LIU Z Y. A new method for preventing HP from frosting[J]. Renewable Energy, 2005, 30(5): 753-761.
    [7] 李献偶. 干燥剂除湿换热器强化除湿性能研究[D]. 上海: 上海交通大学,2011. (LI Xian′ou. Research on enhanced dehumidification performance of desiccant heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2011. )
    [8] 姚杨,姜益强,高强. 无霜空气源热泵系统初步实验研究[J]. 建筑科学, 2012, 28(2): 198-199. (YAO Yang, JIANG Yiqiang, GAO Qiang. Preliminary experimental study on frost-free air source heat pump system[J]. Building Science, 2012, 28 (2): 198-199. )
    [9] 唐亮,祖述程. 空气的除湿处理技术[J]. 中国新技术新产品,2010(7):8. (TANG Liang, ZU Shucheng. Dehumidification of air treatment technology[J]. China′s New Technology and New Products, 2010(7):8. )
    [10] ZHANG Li, FUJINAWA T, SAIKAWA M. A new method for preventing air-source heat pump water heaters from frosting[J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334.
    [11] 王志华,王沣浩,郑煜鑫. 一种新型无霜空气源热泵热水器实验研究[J]. 制冷学报,2015, 36(1): 52-58. (WANG Zhihua, WANG Fenghao, ZHENG Yuxin. Experimental study of a novel frost-free air source seat pump water heater system[J]. Journal of Refrigeration, 2015, 36 (1): 52-58. )
    [12] KWAK K, BAI C. A study on the performance enhancement of heat pump using electric heater under the frosting condition: heat pump under frosting condition[J]. Applied Thermal Engineering, 2010,30(6/7):539-543.
    [13] MADER G, THYBO C. A new method of defrosting evaporator coils[J]. Applied Thermal Engineering, 2012, 39:78-85.
    [14] KRAKOW K I, YAN L, LIN S. An idealized model of reversed-cycle hot gasde frosting of evaporators[J]. ASHRAE Transactions,1993, 99:317-338.
    [15] QU Minglu, XIA Liang, DENG Shiming, et al. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump-part II: modeling analysis[J]. Applied Energy, 2012, 91(1):274-280.
    [16] DONG Jiankai, DENG Shiming, JIANG Yiqiang, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump[J]. Applied Thermal Engineering, 2012, 37(5): 380-387.
    [17] LIU Zhongliang, WANG Hongyan, ZHANG Xinhua, et al. An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel anti-frosting paint[J]. International Journal of Refrigeration, 2006, 29(2):229-236.
    [18] LIANG Caihua, WANG Feng, LYU Yan, et al. Experimental study of the effects of fin surface characteristics on defrosting behavior[J]. Applied Thermal Engineering, 2015, 75(1):86-92.
    [19] AMER M, WANG C C. Review of defrosting methods[J]. Renewable and Sustainable Energy Reviews, 2017, 73:53-74.
    [20] 曲明璐,王坛,陈剑波. 采用多环路室外机的空气源热泵除霜特性试验研究[J]. 流体机械,2014,42(11):59-62. (QU Minglu, WANG Tan, CHEN Jianbo. Experimental study on reverse cycle defrosting performance for an air source heat pump using multi-ring outdoor unit[J]. Fluid Machinery, 2014,42 (11): 59-62. )
    [21] 郑捷庆,庄友明,张军,等. 高电压技术在制冷设备除霜中的应用[J]. 高电压技术,2007,33(12): 97-100. (ZHENG Jieqing, ZHUANG Youming, ZHANG Jun, et al. Application of high voltage technology in refrigeration equipment defrosting[J]. High Voltage Engineering, 2007, 33(12): 97-100. )
    [22] WANG Dingyuan, TAO Tangfei. XU Guanghua, et al. Experimental study on frosting suppression for a finned-tube evaporator using ultrasonic vibration[J]. Experimental Thermal and Fluid Science, 2012,36: 1-11.
    [23] TAN Haihui, XU Guanghua, TAO Tangfei, et al. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting[J]. Applied Thermal Engineering, 2016, 107: 479-492.
    [24] TUDOR V, OHADI M, SALEHI M A, et al. Advances in control of frost on evaporator coils with an applied electric field[J]. International Journal of Heat and Mass Transfer, 2005, 48(21/22): 4428-4434.
    [25] TAN Haihui, TAO Tangfei, XU Guanghua, et al. Experimental study on defrosting mechanism of intermittent ultrasonic resonance for a finned-tube evaporator[J]. Experimental Thermal and Fluid Science,2014, 52: 308-317.
    [26] TAN Haihui, XU Guanghua, TAO Tangfei, et al. Experimental investigation on the defrosting performance of a finned-tube evaporator using intermittent ultrasonic vibration[J]. Applied Energy, 2015,158: 220-232.
    [27] 龚光彩,王洪金. 空气源热泵除霜方式的研究现状及进展[C]//全国热泵新技术及应用研讨会论文集. 2009. (GONG Guangcai, WANG Hongjin. Research status and progress of defrosting methods of air source heat pump [C]//Proceedings of New Technology and Application Seminar of National Heat Pump. 2009. )
    [28] 林灿洪,张静, 刘金斗. 新型除霜方式的研究[J]. 日用电器, 2017(5):67-70. (LIN Canhong, ZHANG Jing, LIU Jindou. Study on the new model of the defrosting of the room air conditioner[J]. Household Electrical Appliances, 2017(5): 67-70. )
    [29] BYUN J S, LEE J, JEON C D. Frost retardation of an air-source heat pump by the hot gas bypass method[J]. International Journal of Refrigeration, 2008, 31(2): 328-334.
    [30] HUANG Dong, LI Quanxu, YUAN Xiuling. Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump[J]. Applied Energy, 2009, 86(9): 1697-1703.
    [31] WANG Zhiyi, WANG Xinmin, DONG Zhiming. Defrost improvement by heat pump refrigerant charge compensating[J]. Applied Energy, 2008, 85(11):1050-1059.
    [32] JANG J Y, BAE H H, LEE S J, et al. Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency[J]. Applied Energy, 2013, 110:9-16.
    [33] 梁彩华, 张小松, 巢龙兆, 等. 显热除霜方式与逆向除霜方式的对比试验研究[J]. 制冷学报, 2005, 26(4):20-24. (LIANG Caihua, ZHANG Xiaosong, ZHAO Longzhao, et al. Experimental comparison of sensible heat defrost and the conventional reverse cycle defrost[J]. Journal of Refrigeration, 2005, 26 (4): 20-24. )
    [34] 孙福涛, 蒲亮. 一种空气源热泵除霜新技术研究[J]. 制冷与空调(北京), 2017, 17(4):7-10. (SUN Futao, PU Liang. Research on a new defrosting technology applied to air source heat pump[J]. Refrigeration and Air-conditioning, 2017, 17(4): 7-10. )
    [35] 倪龙, 周超辉, 姚杨, 等. 空气源热泵蓄热系统形式及研究进展[J]. 制冷学报, 2017, 38(4):23-30. (NI Long, ZHOU Chaohui, YAO Yang, et al. Research progress of air source heat pump heat storage system[J]. Journal of Refrigeration, 2017, 38 (4): 23-30. )
    [36] 陈超, 欧阳军, 王秀丽, 等. 空气源热泵机组冬季除霜热量补偿新方法[J]. 制冷学报, 2006, 27(4):37-40. (CHEN Chao, OUYANG Jun, WANG Xiuli, et al. New method of heat compensation for defrosting of air source heat pump system in winter[J]. Journal of Refrigeration, 2006, 27 (4): 37-40. )
    [37] 董建锴, 姜益强, 姚杨, 等. 空气源热泵过冷蓄能除霜蓄能特性实验研究[J]. 太阳能学报, 2012, 33(9):1536-1540. (DONG Jiankai, JIANG Yiqiang, YAO Yang, et al. Experimental study on the characteristics of thermal energy storage for air-source heat pump defrosting using sub-cooling energy of refrigeration[J]. Acta Energiae Solaris Sinica, 2012, 33 (9): 1536-1540. )
    [38] 韩志涛, 姚杨, 马最良, 等. 空气源热泵蓄能热气除霜新系统与实验研究[J]. 哈尔滨工业大学学报, 2007, 39(6):901-903. (HAN Zhitao, YAO Yang, MA Zuiliang, et al. A new air source heat pump system of energy storage for heat flux defrost and its experimental study[J]. Journal of Harbin Institute of Technology, 2007, 39(6): 901-903.)
    [39] LIU Zhongbao, LI Ao, WANG Qinghua, et. al. Experimental study on a new type of thermal storage defrosting system for frost-free household refrigerators[J]. Applied Thermal Engineering, 2017, 118: 256-265.
    [40] ZHANG Long, DONG Jiankai, JIANG Yiqiang, et al. A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump[J]. Applied Energy, 2014, 133:101-111.
    [41] LIU Zhongbao, FAN Pengyan, WANG Qinghua, et. al. Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage[J]. Applied Thermal Engineering, 2018, 128:1420-1429.
    [42] QU Minglu, LI Tianrui, DENG Shiming, et. al. Improving defrosting performance of cascade air source heat pump using thermal energy storage based reverse cycle defrosting method[J]. Applied Thermal Engineering, 2017, 121: 728-736.
    [43] 马素霞, 蒋永明, 文博, 等. 相变蓄热蒸发型空气源热泵性能实验研究[J]. 太阳能学报, 2015, 36(3):604-609. (MA Suxia, JIANG Yongming, WEN Bo, et al. Experimental study on the performance of the ASHP with phase change thermal storage evaporator[J]. Acta Energiae Solaris Sinica, 2015, 36 (3): 604-609. )
    [44] 崔海亭, 袁修干, 侯欣宾. 蓄热技术的研究进展与应用[J]. 化工进展, 2002, 21 (1): 23-25. (CUI Haiting, YUAN Xiugan, HOU Xinbin. Research progress and application of heat storage technology[J]. Progress in Chemistry, 2002, 21 (1): 23-25. )
    [45] 董建锴, 李露, 姜益强, 等. 不同相变蓄能器对多联机空气源热泵蓄热特性的影响[J]. 太阳能学报, 2016, 37(11):2856-2861. (DONG Jiankai, LI Lu, JIANG Yiqiang, et al. Effect of two kinds of phase change materials heat exchanger on energy storage performance of multi-split air source heat pump[J]. Acta Energiae Solaris Sinica, 2016, 37 (11): 2856-2861. )
    [46] 李永辉, 马素霞, 谢豪. 管翅式相变蓄热器性能的实验研究[J]. 可再生能源, 2014, 32(5):574-578. (LI Yonghui, MA Suxia, XIE Hao. Experimental study on performance of tube-fin phase change storage[J]. Renewable Energy, 2014, 32 (5): 574-578. )
    [47] 张杰, 兰菁, 杜瑞环, 等. 几种空气源热泵除霜方式的性能比较[J]. 制冷学报, 2012, 33(2):47-49. (ZHANG Jie, LAN Jing, DU Ruihuan, et al. The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of Refrigeration, 2012, 33 (2): 47-49. )
    [48] 刘其伟, 姜益强, 董建锴, 等. 矩形相变蓄热器蓄热特性研究[J]. 暖通空调, 2013, 43(11):92-94. (LIU Qiwei, JIANG Yiqiang, DONG Jiankai, et al. Energy storage performance of a rectangle phase change material heat exchanger[J]. HV & AC, 2013, 43 (11): 92-94. )
    [49] 胡文举, 姜益强, 姚杨, 等. 基于除霜的相变蓄热器对空气源热泵性能的影响[J]. 天津大学学报, 2009, 42(10):908-912. (HU Wenju, JIANG Yiqiang, YAO Yang, et al. Effect of PCM based heat exchanger for defrosting on performance of air source heat pump[J]. Journal of Tianjin University, 2009,42 (10): 908-912. )
    [50] 胡文举,姜益强,姚杨,等. 温湿度对空气源热泵相变蓄能除霜系统特性影响[J]. 哈尔滨工业大学学报,2012,44(6):65-69. (HU Wenju, JIANG Yiqiang, YAO Yang, et al. Effects of air temperature and humidity on system defrosting characteristics of a PCM based air source heat pump[J]. Journal of Harbin Institute of Technology, 2012,44 (6): 65-69. )