神华煤直接液化转化率及收率与温度和时间的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of reactive temperature and time on conversion and yield of Shenhua coal direct liquefaction
  • 作者:桑磊 ; 舒歌平
  • 英文作者:SANG Lei;SHU Ge-ping;National Engineering Laboratory for Direct Coal Liquefaction,Shanghai Research Institute,China Shenhua Coal to Liquid and Chemical Co.,Ltd.;
  • 关键词:煤直接液化 ; 反应温度 ; 反应时间 ; 曲面拟合
  • 英文关键词:direct coal liquefaction;;reaction temperature;;reaction time;;surface fitting
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:中国神华煤制油化工有限公司上海研究院煤炭直接液化国家工程实验室;
  • 出版日期:2019-03-19 14:28
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.391
  • 基金:国家重点研发计划资助项目(2016YFB0600303)
  • 语种:中文;
  • 页:XDHG201905054
  • 页数:4
  • CN:05
  • ISSN:11-2172/TQ
  • 分类号:235-238
摘要
通过实验考察了反应温度和反应时间对神华煤直接液化性能的影响,研究了煤转化率及各产物收率与反应温度和反应时间的关系。实验结果表明,反应温度和反应时间对煤直接液化性能的影响存在交互作用,在一定范围内,在较低的反应温度、较长的反应时间下的煤转化率可以达到和较高反应温度、较短反应时间时差不多,但是液化油收率相对低一些。使用Origin软件对实验数据进行曲面拟合,得到了煤转化率及各产物收率与反应温度和反应时间的关系表达式。每个关系式的校正判定系数都大于0. 95,说明拟合结果较为理想。
        The effects of reaction temperature and reaction time on the direct liquefaction performance of Shenhua coal are investigated via experiments.Relationship of coal conversion and product yield to both reaction temperature and reaction time is studied.The experimental results illustrate that the reaction temperature and reaction time has interaction effects on direct coal liquefaction performance. In a certain range,the coal conversion that can be achieved at a lower reaction temperature and a longer reaction time is close to that at a higher reaction temperature and a shorter reaction time,but the liquefaction oil yield is a bit lower.The expressions of relationship of coal conversion and each product yield to both reaction temperature and reaction time are obtained by using Origin software with surface fitting module to fit the experimental data.The adjustment R-Square of each relation is greater than 0. 95,indicating that the fitting results of correlations with these relations are relative satisfactory.
引文
[1]李小红.“三高”劣质煤气化应用研究[D].太原:太原理工大学,2010.
    [2]舒歌平,沈小波.舒歌平,我经历的煤直接液化历程[J].能源,2014,(11):100-105.
    [3]滕吉文,乔勇虎,宋鹏汉.我国煤炭需求、探查潜力与高效利用分析[J].地球物理学报,2016,59(12):4633-4653.
    [4]陈浜.基于视觉计算的煤岩识别方法研究[D].北京:中国矿业大学,2018.
    [5]桑磊,舒歌平.煤直接液化性能的影响因素浅析[J].化工进展,2018,37(10):3788-3798.
    [6]孙启文,吴建民,张宗森,等.煤间接液化技术及其研究进展[J].化工进展,2013,32(1):1-12.
    [7]程俊峰,甄玉静.浅析煤炭液化技术的发展状况[J].化工管理,2014,(8):85-86,88.
    [8]谢晶,卢晗,陈银飞,等.助剂改性Fe OOH及其煤直接液化催化活性[J].化工学报,2016,5(5):1892-1899.
    [9]王敏.义马煤直接液化性能的研究[D].焦作:河南理工大学,2011.
    [10]Li X,Hu H,Jin L,et al. Approach for promoting liquid yield in direct liquefaction of Shenhua coal[J]. Fuel Processing Technology,2008,89(11):1090-1095.
    [11]Liu Z,Shi S,Li Y.Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J].Chemical Engineering Science,2009,65(1):12-17.
    [12]刘振宇.煤直接液化技术发展的化学脉络及化学工程挑战[J].化工进展,2010,29(2):193-197.