HVOF/AC-HVAF热喷WC-10Co-4Cr涂层的耐冲蚀性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Erosion resistance of HVOF/AC-HVAF sprayed WC-10Co-4Cr coatings
  • 作者:廉影 ; 李阳 ; 王建民 ; 武浩
  • 英文作者:LIAN Ying;LI Yang;WANG Jianmin;WU Hao;College of Mechanical and Equipment Engineering,Hebei University of Engineering;
  • 关键词:高速火焰热喷涂 ; WC-10Co-4Cr涂层 ; 耐冲蚀性能 ; 冲蚀机制
  • 英文关键词:HVOF/AC-HVAF;;WC-10Co-4Cr coatings;;erosion resistance;;erosion mechanism
  • 中文刊名:HJXB
  • 英文刊名:Transactions of the China Welding Institution
  • 机构:河北工程大学机械与装备工程学院;
  • 出版日期:2019-04-25
  • 出版单位:焊接学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(51705125);; 河北省高等学校科学技术研究资助项目(QN2017030);; 邯郸市科学技术研究与发展计划资助项目(1521109072-4);; 河北省科技计划资助项目(16211003D)
  • 语种:中文;
  • 页:HJXB201904017
  • 页数:7
  • CN:04
  • ISSN:23-1178/TG
  • 分类号:101-106+171
摘要
采用高速火焰热喷涂系统(HVOF/AC-HVAF)在0Cr13Ni5Mo不锈钢表面制备了三种组织结构不同的WC-10Co-4Cr涂层,通过料浆罐冲蚀试验机对三种涂层和0Cr13Ni5Mo基材的冲蚀行为和冲蚀机制进行了研究,重点分析涂层组织与耐冲蚀性能的关系.结果表明,三种涂层的耐冲蚀性能均优于0Cr13Ni5Mo基材,冲蚀失重仅为基材的6%~35%,组织越均匀、致密的涂层耐冲蚀性能越优.低攻角冲击时,涂层冲蚀机制以粘结相去除,WC颗粒剥落为主,基材冲蚀机制主要为微切削;高攻角冲击时,涂层冲蚀机制以涂层剥落为主,基材的冲蚀机制主要为变形磨损.涂层的组织决定了不同试验条件下涂层的冲蚀行为和冲蚀机制.
        Three WC-10Co-4Cr coatings with different microstructure were prepared on 0Cr13Ni5Mo stainless steel by high velocity oxy-fuel/air-fuel(HVOF/AC-HVAF) thermal spray systems. The erosion behavior and mechanisms of three WC-10Co-4Cr coatings and 0Cr13Ni5Mo were investigated using slurry pot erosion equipment, and the relation between microstructure and erosion resistance of coatings was analyzed. The results indicated that the erosion resistance of three coatings was better than that of 0Cr13Ni5Mo. The erosion mass loss of three coatings was 6% ~ 35% of the 0Cr13Ni5Mo. The coatings with more homogeneous microstructure behaved better erosion resistance. For coatings,the dominant erosion mechanism was removal of binder and WC cuboids pull out at shallow impingement angle while coatings spallation mechanism dominated at high impingement angle. In contrast, micro-cutting mechanism dominated at shallow impingement angle while its dominant erosion mechanism was repeated deformation which resulted in the removal of materials at high impingement angle for 0Cr13Ni5Mo stainless steel. The erosion behavior and mechanisms of coatings at different test condition were dependent on their microstructure.
引文
[1]刘基凯,苏新勇.装备修复用铜合金涂层制备方法及应用研究[J].表面技术,2016,45(9):134-139.Liu Jikai,Su Xinyong.Preparing technology and application of cupreous coatings in equipment repairing[J].Surface Technology,2016,45(9):134-139.
    [2]杨秀从,李国禄,王海斗,等.超音速等离子喷涂NiCr-Cr3C2涂层的结构及冲蚀磨损机理[J].表面技术,2016,45(9):32-37.Yang Xiucong,Li Guolu,Wang Haidou,et al.Microstructure and erosion wear of supersonic plasma sprayed NiCr-Cr3C2coatings[J].Surface Technology,2016,45(9):32-37.
    [3]Vashishtha N,Khatirkar R K,Sapate S G.Tribological behaviour of HVOF sprayed WC-12Co,WC-10Co-4Cr and Cr3C2-25NiCr coatings[J].Tribology International,2017,105:55-68.
    [4]Zafar S,Sharma A K.Abrasive and erosive wear behaviour of nanometric WC-12Co microwave clads[J].Wear,2016,346-347:29-45.
    [5]Lamana M S,Pukasiewicz A G M,Sampath S.Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings[J].Wear,2018,398-399:209-219.
    [6]宋自力,杜晓东,李连颖,等.送粉方式对WC增强复合涂层组织的影响[J].焊接学报,2012,33(4):13-16.Song Zili,Du Xiaodong,Li Lianying,et al.Influence of powderfeeding mode on microstructure of WC reinforced composite coating[J].Transactions of the China Welding Institution,2012,33(4):13-16.
    [7]赵辉,丁彰雄.超音速火焰喷涂纳米结构WC-12Co涂层耐泥沙冲蚀性能研究[J].热加工工艺,2009,38(10):84-88.Zhao Hui,Ding Zhangxiong.Research on slurry erosion resistance of nano-structured WC-12Co coatings deposited by HVOF[J].Hot Working Technology,2009,38(10):84-88.
    [8]陈小明,周夏凉,吴燕明,等.超音速火焰喷涂微、纳米结构WC-10Co4Cr涂层及其性能[J].金属热处理,2016,41(5):52-56.Chen Xiaoming,Zhou Xialiang,Wu Yanming,et al.Properties of micro and nano structured WC-10Co4Cr coatings by HVOFspray[J].Heat Treatment of Metals,2016,41(5):52-56.
    [9]Gong T M,Yao P P,Zuo X T,et al.Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC-10Co-4Cr coatings for aircraft landing gear[J].Wear,2016,362-363:135-145.
    [10]Ding K Y,Wang L J.Effect of particle density on depositing properties of WC-17Co by HVOF process[J].China Welding,2014,23(4):44-50.
    [11]Mi P B,Zhao H J,Wang T,et al.Sliding wear behavior of HVOFsprayed WC-(nano-WC-Co)coating at elevated temperatures[J].Materials Chemistry and Physics,2018,206:1-6.
    [12]Thakur L,Arora N.A comparative study on slurry and dry erosion behavior of HVOF sprayed WC-CoCr coatings[J].Wear,2013,303:405-411.
    [13]Goyal D K,Singh H,Kumar H,et al.Slurry erosion behavior of HVOF sprayed WC-10Co-4Cr and Al2O3+13TiO2 coatings on a turbine steel[J].Wear,2012,289:46-57.
    [14]Li Y,Lian Y,Cao J J,et al.Solid particle erosion behavior of HVOF/HVAF sprayed WC-Co-Cr coatings[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2016,230(6):634-643.