壳聚糖-聚氧化乙烯@明胶纤维制备及其生物性能探究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and biological properties of Chitosan-PEO@Gelatin nanofibers
  • 作者:陈鹏 ; 王耐艳 ; 郑莹莹
  • 英文作者:CHEN peng;WANG Naiyan;ZHENG Yingying;School of Sciences,Zhejiang Sci-Tech University;School of Materials and Textiles,Zhejiang Sci-Tech University;
  • 关键词:壳聚糖 ; 明胶 ; 同轴电纺 ; 细胞培养
  • 英文关键词:chitosan;;gelatin;;coaxial electrospinning;;cell culture
  • 中文刊名:ZJSG
  • 英文刊名:Journal of Zhejiang Sci-Tech University(Natural Sciences Edition)
  • 机构:浙江理工大学理学院;浙江理工大学材料与纺织学院;
  • 出版日期:2018-06-02 13:33
  • 出版单位:浙江理工大学学报(自然科学版)
  • 年:2019
  • 期:v.41
  • 基金:国家自然科学基金项目(51603187);; 浙江省自然科学基金项目(LY15E030011)
  • 语种:中文;
  • 页:ZJSG201901009
  • 页数:9
  • CN:01
  • ISSN:33-1338/TS
  • 分类号:60-68
摘要
为提高壳聚糖的可纺性和生物相容性进行了材料设计。通过在壳聚糖(CS)乙酸溶液中引入高度可纺性的聚氧化乙烯(PEO)来提高壳聚糖的可纺性,并以高度可纺性的明胶(GEL)作为核模板,通过同轴静电纺丝技术进一步提高壳聚糖的可纺性,并制备出核壳结构的壳聚糖-聚氧化乙烯@明胶(CS-PEO@GEL)纤维。纺丝实验结果显示,CS和GEL浓度对纤维成型有显著影响,最佳条件为:CS浓度为3%(W/V),CS和PEO质量比为4∶1,GEL浓度为41%(W/V);扫描电镜(SEM)和透射电镜(TEM)显示CS-PEO@GEL纳米纤维表面均匀光滑,具有核壳结构,内径约为100nm,外径约为150nm;亲水性测试结果表明,亲水性较好的PEO和GEL能够明显提高CS的亲水性;骨肉瘤细胞MG-63培养过程中,CS-PEO@GEL纤维呈现出良好的生物相容性。所制备的CS-PEO@GEL纤维材料在骨组织工程上具有潜在的研究价值。
        To improve spinnability and biocompatibility of chitosan(CS),material design was conducted.Spinnability of chitosan improved through introducing PEO with high spinnability in CS acetic acid solution.Besides,gelatin(GEL)with high spinnability was used as the template to further improve spinnability of chitosan through coaxial electrospinning technology.And chitosan-polyethylene oxidegelatin(CS-PEO@GEL)nanofibers with core-shell structure were prepared.The experimental results showed that,the concentration of CS and GEL had significant influence on fiber forming.The optimal conditions are as follows:CS concentration 3%(W/V),CS/PEO mass ratio 4/1 and GEL concentration41%(W/V).SEM and TEM showed that CS-PEO@GEL nanofibers with the inner diameter of about 100 nm and external diameter of about 150 nm were uniform and smooth on the surface,and had core-shell structure.The hydrophilicity test result indicated that,hydrophilicity of the CS was improved by adding PEO and GEL.When MG-63 cells were cultured,CS-PEO@GEL nanofibers presented good biocompatibility.The prepared CS-PEO@GEL nanofibers have potential research value for bone tissue engineering.
引文
[1]Mouri1o V,Boccaccini A R.Bone tissue engineering therapeutics:Controlleddrugdeliveryinthreedimensional scaffolds[J].Journal of the Royal Society Interface,2010,7(43):209-227.
    [2]Polocorrales L,Latorreesteves M,Ramirezvick J E.Scaffold design for bone regeneration[J].Journal of Nanoscience&Nanotechnology,2014,14(1):15-56.
    [3]LogithKumar R,KeshavNarayan A,Dhivya S,et al.A review of chitosan and its derivatives in bone tissue engineering[J].Carbohydrate Polymers,2016,151(1):172-188.
    [4]Desai K,Kit K,Li J,et al.Morphological and surface propertiesofelectrospunchitosannanofibers[J].Biomacromolecules,2008,9(3):1000-1006.
    [5]Liu X D,Tokura S,Haruki M,et al.Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions[J].Carbohydrate Polymers,2002,49(2):103-108.
    [6]Bispo V M,Mansur A A P,Barbosa-Stancioli E F,et al.Biocompatibility of nanostructured chitosan/poly(vinyl alcohol)blends chemically crosslinked with genipin for biomedical applications[J].Journal of Biomedical Nanotechnology,2010,6(2):166-175.
    [7]Duan B,Dong C,Yuan X,et al.Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide)[J].Journal of Biomaterials Science-Polymer Edition,2004,15(6):797-811.
    [8]Alves N M,Mano J F.Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications[J].International Journal of Biological Macromolecules,2008,43(5):401-414.
    [9]Zhang Y,Su B,Ramakrishna S,et al.Chitosan nanofibers from an easily electrospinnable Uhmwpeo-doped chitosan solution system[J].Biomacromolecules,2007,9(1):136-141.
    [10]Kousaku O,Dongil C,Hakyong K,et al.Electrospinning of chitosan[J].Macromolecular Rapid Communications,2004,25(18):1600-1605.
    [11]Geng X, Kwon O h,Jang J.Electrospinning of chitosan dissolved in concentrated acetic acid solution[J].Biomaterials,2005,26(27):5427-5432.
    [12]Bhattarai N,Edmondson D,Veiseh O,et al.Electrospun chitosan-based nanofibers and their cellular compatibility[J].Biomaterials,2005,26(31):6176-6184.
    [13]Aliabadi M,Irani M,Ismaeili J,et al.Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel,cadmium,lead and copper ions from aqueous solution[J].Chemical Engineering Journal,2013,220(11):237-243.
    [14]Zarghami A,Irani M,Golpour M,et al.Fabrication of PEO/chitosan/PCL/olive oil nanofibrous scaffolds for wound dressing applications[J].Fibers and Polymers,2015,16(6):1201-1212.
    [15]Huang Z M,Zhang Y Z,Lim C T,et al.Electrospinning and mechanical characterization of gelatin nanofibers[J].Polymer,2004,45(15):5361-5368.
    [16]Shalumon K T,Lai G J,Chen C H,et al.Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite core-shell nanofibrous membranes[J].ACS Appl Mater Interfaces,2015,7(38):21170-21181.
    [17]Chen J P,Chen S H, Lai G J.Preparation and characterization of biomimetic silk fibroin-chitosan composite nanofibers by electrospinning for osteoblasts culture[J].Nanoscale Research Letters,2012,7(1):170.
    [18]Pal P,Dadhich P,Srivas P K,et al.Bilayered nanofibrous 3Dhierarchy as skin rudiment by emulsion electrospinning for burn wound management[J].Biomaterilas Science,2017,5(10):1786-1799.
    [19]Teboho C M,Adriaan S L.Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres[J].Journal of Cleaner Production,2017,156(10):470-479.
    [20]Ignatova M,Manolova N,Markova N,et al.Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications[J].Macromolecular Bioscience,2009,9(1):102-111.
    [21]Huang Z M,Zhang Y Z, Ramakrishna S,et al.Electrospinning and mechanical characterization of gelatin nanofibers[J].Polymer,2004,45(15):5361-5368.
    [22]Dhandayuthapani B,Krishnan U M,Sethuraman S.Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,94(1):264-272.
    [23]Huang Z M,Zhang Y Z, Ramakrishna S,et al.Electrospinning and mechanical characterization of gelatin nanofibers[J].Polymer,2004,45(15):5361-5368.
    [24]Huang Y, Onyeri S, Siewe M,et al.In vitro characterization of chitosan-gelatin scaffolds for tissue engineering[J].Biomaterials,2005,26(36):7616-7627.
    [25]Chien C Y, Tsai W B.Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides,hydroxyapatite,and bone morphogenic protein-2on titanium to improve the osteogenesis of bone marrow stem cells[J].Acs Applied Materials Interfaces,2013,5(15):6975-6983.
    [26]Nandagiri V K,Gentile P,Chiono V,et al.Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds:Influence on the physical properties and cell behavior[J].Journal of the Mechanical Behavior of Biomadical Materials,2011,4(7):1318-1327.
    [27]Li J, Chen Y, Yin Y, et al. Modulation of nanohydroxyapatite size via formation on chitosangelatin network film in situ[J].Biomaterials,2007,28(5):781-790.
    [28]梁红培,王英波,粟智,等.电纺制备明胶/壳聚糖/羟基磷灰石/氧化石墨烯抗菌复合纳米纤维的研究[J].无机材料科学学报,2015,30(5):516-522.
    [29]Gupta N, Kushwah A K, Chattopadhyay M C.Adsorptive removal of Pb2+, Co2+and Ni 2+by hydroxyapatite/chitosancompositefromaqueous solution[J].Journal of the Taiwan Institute of Chenmical Engineers,2012,43(1):125-131.
    [30]Yan L,Jie Z,Cong X,et al.Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption[J].Science China Chemistry,2016,59(1):95-105.
    [31]Murphy C M,Haugh M G,OBrien F J.The effect of mean pore size on cell attachment,proliferation and migration in collagenglycosaminoglycan scaffolds for bone tissue engineering[J].Biomaterials,2010,31(3):461-466.
    [32]Sun L J,Guo D G,Zhao W A,et al.Influences of reaction parameters and Ce contents on structure and properties of nano-scale Ce-HA powders[J].Journal of Materials Science Technology,2014,30(8):776-781.
    [33]Tual C,Espuche E,Escoubes M,et al.Transport properties of chitosan membranes:Influence of crosslinking[J].Journal of Polymer Science Part B Polymer Physics,2000,38(11):1521-1529.
    [34]Paluszkiewicz C,Stodolak E,Hasik M,et al.FT-IR studyofmontmorillonite-chitosannanocomposite materials[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,79(4):784-788.
    [35]Schiffman J D,Schauer C L.One-step electrospinning of cross-linked chitosan fibers[J].Biomacromolecules,2007,8(9):2665-2667.
    [36]Zhang Y,Su B, Ramakrishna S,et al.Chitosan nanofibers from an easily electrospinnable UHMWPEOdoped chitosan solution system[J].Biomacromolecules,2007,9(1):136-141.
    [37]Hao L L,Wang H L,Cai R Z,et al.Mesoporous hydroxylapatite/activated carbon bead-on-string nanofibers and their sorption towards Co(Ⅱ)[J].RSC Advances,2016,6(74):69947-69955.