一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path
  • 作者:冯帅 ; 常军 ; 牛亚军 ; 穆郁 ; 刘鑫
  • 英文作者:Feng Shuai;Chang Jun;Niu Ya-Jun;Mu Yu;Liu Xin;School of Opto-Electronics, Beijing Institute of Technology;Tianjin Jinhang Institute of Technical Physics;
  • 关键词:双面离轴非球面 ; 反射镜检测 ; 零位补偿 ; 光学设计
  • 英文关键词:asymmetric double-sided off-axis aspheric surface;;mirror detection;;null compensation;;optical design
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京理工大学光电学院;天津津航技术物理研究所;
  • 出版日期:2019-06-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61471039)资助的课题~~
  • 语种:中文;
  • 页:WLXB201911013
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:116-121
摘要
随着多波段共孔径高精度探测技术的发展,非对称双面离轴非球面反射镜因具备突出特点而发挥着越来越重要的作用,但高精度检测是限制其使用的关键步骤,而针对非对称双面离轴非球面反射镜检测一般还是分别使用两套补偿器单独完成,效率较低且切换补偿器会降低检测精度.针对这个问题,本文以干涉检验法中的折射式Offner补偿法为基础,按照离轴孔径光阑使光线离轴并分光、共用透镜组前后移动变焦及反射镜折叠光路的思路,提出一种变焦零位补偿装置光路设计的方法,并针对实例使用光学设计软件进行仿真设计实验,实现使用一套变焦零位补偿装置完成对非对称双面离轴非球面反射镜正反两个面的高精度检测光路设计.针对设计结果进行公差分析,分析表明设计满足制造装配精度要求,验证了该方法的可行性,为非对称双面离轴非球面反射镜高精度检测提供了一种新思路.
        With the development of multispectral common-aperture high-precision detection technology, the asymmetric double-sided off-axis aspheric mirror is playing an increasingly important role in characterizing the correcting phase difference, increasing the relative caliber of system, expanding the view angle of field,simplifying system structure, and reducing weight and volume. But high-precision detection is a key step restricting the applications of these mirrors. At present, the compensation method of the interference test is the most effective mean of off-axis aspheric surface detection which has a simple structure, large compensation range, small number of components and is easy to control. However for the detection of asymmetric doublesided off-axis aspheric mirrors, two sets of alone compensators are still used, in which the efficiency is low and the switching compensator will reduce the accuracy of detection. Aiming at this problem, in this paper we propose a zoom null compensation method which is based on the Offner refracting compensation method. In this method, the off-axis aperture stop causes the light to be off-axis and split, the common lens group is moved to zoom, and the mirror folds the light path. There are two off-axis apertures are provided for off-axis and splitting, four lenses which form three lens groups are used to move positions for zooming, two mirrors are used to fold light. An optical design software is used to simulate the experiment, and implements the design for the high-precision detection of optical path for the asymmetric double-sided off-axis aspherical mirror by using this set of null compensation method. The simulation result shows that the theoretical residual wave aberration increases up to 0.0003 l root-mean-square(RMS) and 0.0001 l RMS with the designed system compensation,which meet the requirement for detection. At the same time, the tolerance analysis is carried out according to the design result, the actual residual wave aberrations within the existing tolerance range are 0.0326 l RMS and0.0316 l RMS, which meet the requirements for manufacturing and assembly. The present work provides a new idea for the high-precision detection of asymmetric double-sided off-axis aspheric mirror. At the same time, the quality of the detected beam in this paper is achieved under ideal conditions, and the quality of beam will be considered in the next research work.
引文
[1]Pan J H 2000 Eng.Sci.2 32(in Chinese)[潘君骅2000中国工程科学2 32]
    [2]Forbes G W 2007 Opt.Express 15 5218
    [3]Gong D P 2015 Ph.D.Dissertation(Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences)(in Chinese)(in Chinese)[龚大鹏2015博士学位论文(长春:中国科学院长春光学精密机械与物理研究所)]
    [4]Fappani D,Ducollet H 2007 Proc.SPIE 6687 66870T
    [5]Zhang P Y 2015 M.S.Thesis(Xi'an:Xidian University)(in Chinese)(in Chinese)[张佩钰2015硕士学位论文(西安:西安电子科技大学)]
    [6]Shi T,Yang Y Y,Zhang L,Liu D 2014 Chin.Opt.7 26(in Chinese)[师途,杨甬英,张磊,刘东2014中国光学7 26]
    [7]Wang X K 2014 Infrared Laser Eng.43 2959(in Chinese)[王孝坤2014红外与激光工程43 2959]
    [8]Km S W,Walker D,Brooks D 2003 Mechatronics 13 295
    [9]Weckenmann A,Estler T,Peggs G,McMurtry D 2004 CIRPAnn.53 657
    [10]Yellowhair J,Burge J H 2008 Opt.Eng.47 023604
    [11]Smith W J(translated by Zhou H X,Cheng Y F)2011Modern Optical Engineering(Beijing:Chemical Industry Press)pp 536-541(in Chinese)[沃伦J.史密斯著(周海宪,程云芳译)2011现代光学工程(北京:化学工业出版社)第536-541页]
    [12]Nu?ez-Alfonso J M,Cordero-Dávila A,Vergara-Limon S,Cuautle-Cortes J 2001 Appl.Opt.40 501
    [13]Jiang W H,Xian H,Yang Z P,Jiang L T,Rao X J,Xu B1988 Chin.J.Quantum Electron.15 228(in Chinese)[姜文汉,鲜浩,杨泽平,姜凌涛,饶学军,许冰1988量子电子学报15228]
    [14]Wang X K 2012 Acta Photonics Sin.41 379(in Chinese)[王孝坤2012光子学报41 379]
    [15]Burge J H 1993 Ph.D.Dissertation(Tucson:University of Arizona)
    [16]Burge J H,Kot L B,Martin H M,Zhao C,Zobrist T 2006Proc.SPIE 6273 62732T
    [17]Pan J H 2004 Opt.Optoelectronics Technol.2 1(in Chinese)[潘君骅2004光学与光电技术2 1]
    [18]Chen Q F 2011 Ph.D.Dissertation(Xi'an:Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences)(in Chinese)(in Chinese)[陈钦芳2011博士学位论文(西安:中国科学院西安光学精密机械研究所)]
    [19]Chang J,Zhang Z H,Wang R R 2011 Acta Phys.Sin.60034218(in Chinese)[常军,张正慧,王蕊瑞2011物理学报60034218]
    [20]Su D Q,Yi M L 1985 Acta Astrophysics Sin.5 158(in Chinese)(in Chinese)[苏定强,羿美良1985天体物理学报5158]
    [21]Zhang J P 2012 Ph.D.Dissertation(Changchun:Changchun Institute of Optics,Fine Mechanics and Physic,Chinese Academy of Sciences)(in Chinese)[张金平2012博士学位论文(长春:中国科学院长春光学精密机械与物理研究所)]
    [22]Cai L 2006 Optical Parts Processing Technology(Beijing:Weapon Industry Press)pp234-299(in Chinese)[蔡立2006光学零件加工技术(北京:兵器工业出版社)第234-299页]