扰动强度对太湖水华微囊藻群体生长和叶绿素荧光的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Disturbance Intensity on the Growth and Chlorophyll Fluorescence of Microcystis flos-aquae Colony in Lake Taihu
  • 作者:韩丽华 ; 杨桂军 ; 刘玉 ; 秦伯强 ; 钟春妮 ; 杨宏伟
  • 英文作者:HAN Lihua;YANG Guijun;LIU Yu;QIN Boqiang;ZHONG Chunni;YANG Hongwei;Environment and Civil Engineering School,Jiangnan University;State Key Laboratory of Lake and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;
  • 关键词:水华微囊藻 ; 群体 ; 扰动强度 ; 叶绿素荧光 ; 太湖
  • 英文关键词:Microcystis flos-aquae;;colony;;mixing intensity;;chlorophyll fluorescence;;Lake Taihu
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:江南大学环境与土木工程学院;中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;
  • 出版日期:2018-02-15
  • 出版单位:环境科学研究
  • 年:2018
  • 期:v.31;No.241
  • 基金:国家自然科学基金重点项目(No.41230744);; 国家水体污染控制与治理科技重大专项(No.2012ZX07503-002,2012ZX07101-013-03)~~
  • 语种:中文;
  • 页:HJKX201802010
  • 页数:8
  • CN:02
  • ISSN:11-1827/X
  • 分类号:71-78
摘要
风浪扰动在湖泊和水库中频繁发生,是影响湖泊生态系统的重要因素之一.为了解太湖风浪扰动对水华微囊藻群体生长的影响,并探究其影响机理,利用室内摇床试验,设置不同的扰动强度(0、50、100、200、400 rmin)来模拟太湖风浪扰动,扰动时间为24 h,并测定不同扰动强度下水华微囊藻群体生长和叶绿素荧光参数.结果表明,所有试验组中,100 rmin组的ρ(Chla)、微囊藻数量、F_vF_m(潜在最大光合效率)、ETR_(max)(潜在最大光合速率)、I_k(半饱和光强)和α(光能利用效率)增加最快,试验结束时分别为扰动前的3.29、10.75、1.20、2.30、2.21和1.21倍;并且扰动结束后,100 rmin组中3~10细胞群体细胞数量占比由25.80%降至20.70%,显著低于对照组(P<0.05),而>10细胞群体细胞数量占比由0增至25.55%,显著高于对照组(P<0.05).方差分析表明,试验第7~11天,100 rmin组的ρ(Chla)、水华微囊藻数量、F_vF_m、ETR_(max)和α显著高于对照组(P<0.05);第1~5天,400rmin组的ρ(Chla)、ETR_(max)和I_k显著低于对照组(P<0.05).研究显示,适宜的扰动强度(100 rmin)促进水华微囊藻群体生长和光合活性,过高的扰动强度(400 rmin)则抑制水华微囊藻群体生长和光合活性.
        Disturbance induced by wind-wave occurs frequently in lakes and reservoirs,and it is one of the important factors affecting the lakes ecosystem.To understand the effect and mechanism of mixing induced by wind-wave on the growth of Microcystis flos-aquae colony in Lake Taihu,an experiment was conducted in lab,using different disturbance intensity(0,50,100,200 and 400 rmin)by agitator to simulate the mixing induced by wind-wave in Lake Taihu.The disturbance time is 24 h.Growth and chlorophyll fluorescence parameters of M.flos-aquae colony were measured in this study.The study results showed that the increasing speeds ofρ(Chla),abundance,potential maximum photosynthetic efficiency(F_vF_m),the potential maximum photosynthetic rate(ETR_(max)),half saturation light intensity(I_k)and light use efficiency(α)of M.flos-aquae in the 100 rmin groups were the highest among all treatment groups.In the end of the experiment,the value ofρ(Chla),abundance,F_vF_m,ETR_(max),I_kandαof M.flos-aquae in the 100 rmin groups were 3.29,10.75,1.20,2.30,2.21 and 1.21 times as more as that before mixing in the experiment.In the end of this experiment,the cell abundance of3-10 cells colony of M.flos-aquae in the 100 rmin groups decreased from 25.80%to 20.70%to total cell abundance,and which was significantly lower than that in the control groups(P<0.05).However,the cell abundance of>10 cells colony of M.flos-aquae in the 100rmin groups increased significantly from 0 to 25.55%to total cell abundance,which was significantly higher than that in the control groups(P<0.05).The variance analysis showed that theρ(Chla),abundance,F_vF_m,ETR_(max)andαof M.flos-aquae in the 100 rmin groups were significantly higher than those in the control groups(P<0.05)during the 7~(th)-11~(th)day in the experiment.During the 1~(st)-5~(th )day,theρ(Chla),ETR_(max)and I_kin the 400 rmin treatment groups were significantly lower than those in the control groups(P<0.05)in the experiment.The results showed that the suitable disturbance intensity(100 rmin)promoted the growth and photosynthetic activity of M.flos-aquae,but the high disturbance intensity(400 rmin)inhibited the growth and photosynthetic activity of M.flos-aquae.
引文
[1]LIU Jianguo,YANG Wu.Water sustainability for China and beyond[J].Science,2012,337:649-650.
    [2]ZHANG Yunlin,LIU Xiaohan,YIN Yan,et al.A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance[J].Optics Express,2012,20(18):20482-20493.
    [3]秦伯强,杨桂军,马健荣,等.太湖蓝藻水华“暴发”的动态特征及其机制[J].科学通报,2016,61(7):759-770.QIN Boqiang,YANG Guijun,MA Jianrong,et al.Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu,China[J].Chinese Science Bulletin,2016,61(7):759-770.
    [4]QIN Boqiang,ZHU Guangwei,GAO Guang,et al.A drinking water crisis in Lake Taihu,China:linkage to climatic variability and lake management[J].Environmental Management,2010,45:105-112.
    [5]MA Zhimei,XIE Ping,CHEN Jun,et al.Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu[J].Fresenius Environmental Bulletin,2013,22:95-102.
    [6]VONLANTHEN P,BITTNER D,HUDSON A G,et al.Eutrophication causes speciation reversal in whitefish adaptive radiations[J].Nature,2012,482:357-362.
    [7]赵瑾,常学秀,吴程,等.Ni2+胁迫对铜绿微囊藻(Microcystis aeruginosa)和集胞藻(Synechocystis sp.)的生长和光合色素的影响[J].生态毒理学报,2010,5(5):679-684.ZHAO Jin,CHANG Xuexiu,WU Cheng,et al.Effects of nickel on growth and photosynthetic pigments of Microcystis aeruginosa and Synechocystis sp.[J].Asian Journal of Ecotoxicology,2010,5(5):679-684.
    [8]张晓峰,孔繁翔,曹焕生,等.太湖梅梁湾水华蓝藻复苏过程的研究[J].应用生态学报,2005,16(7):1346-1350.ZHANG Xiaofeng,KONG Fanxiang,CAO Huansheng,et al.Recruitment dynamics of bloom-forming cyanobacteria in Meiliang Bay of Taihu Lake[J].Chinese Journal of Applied Ecology,2005,16(7):1346-1350.
    [9]CAO Huansheng,KONG Fanxiang,LUO Liancong,et al.Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu[J].Journal of Freshwater Ecology,2006,21:231-238.
    [10]HUNTER P D,TYLER A N,WILLBY N J,et al.The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake:a case study using high spatial resolution ttime-series airborne remote sensing[J].Limnol Oceanogr,2008,53(6):2391-2406.
    [11]WU Tingfeng,QIN Boqiang,ZHU Guangwei,et al.Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow,eutrophic,and wind-exposed Lake Taihu,China[J].Environmental Science Pollution Research,2013,20(12):8546-8556.
    [12]PAERL W H,FULTON R S,MOISANDER P H,et al.Harmful freshwater algal blooms,with an emphasis on cyanobacteria[J].Scientific World Journal,2001,1:76-113.
    [13]CHISLOCK M F,DOSTER E.Eutrophication:causes,consequences,and controls in aquatic ecosystems[J].Nature Education Knowledge,2013,4(4):10-17.
    [14]SMITH V H,TILMAN G D,NEKOLA J C.Eutrophication:impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystems[J].Environmental Pollution,1999,100:179-196.
    [15]PAERL H W,HALL N S,CALANDRINO E S.Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change[J].Science of the Total Environment,2011,409:1739-1745.
    [16]FOY R H,GIBSON C E,SMITH R V.The influence of daylength,light intensity and temperature on the growth rates of planktonic blue-green algae[J].British Phycological Journal,1976,11:151-163.
    [17]REYNOLDS C S.The ecology of phytoplankton[M].Cambridge:Cambridge University Press,2006.
    [18]张运林,秦伯强,陈伟民,等.悬浮物浓度对水下光照和初级生产力的影响[J].水科学进展,2004,15(5):615-620.ZHANG Yunlin,QIN Boqiang,CHEN Weimin,et al.Experimental study on underwater light intensity and primary productivity caused by variation of total suspended matter[J].Advances in Water Science,2004,15(5):615-620.
    [19]BURKERT U,HYENSTRAND P,DRAKARE S,et al.Effects of the mixotrophic Flagellate ochromonas sp.on colony formation in Microcystis aeruginosa[J].Aquatic Ecology,2001,35(1):11-17.
    [20]LI Yunguang,GAO Kunshan.Photosynthetic physiology and growth as a function of colony size in the cyanobacterium Nostoc sphaeroides[J].European Journal of Phycology,2004,39(1):9-15.
    [21]WALLACE B B,HAMILTON D P.Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa[J].Journal of Plankton Research,2000,22(6):1127-1138.
    [22]WU Xiaodong,KONG Fanxiang.Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom[J].International Review of Hydrobiology,2009,94(3):258-266.
    [23]王华,逄勇.藻类生长的水动力学因素影响与数值仿真[J].环境科学,2008,29(4):884-889.WANG Hua,PANG Yong.Numerical simulation on hydrodynamic character for algae growth[J].Environmental Science,2008,29(4):884-889.
    [24]张冰,李飞鹏,张月红,等.水体扰动对铜绿微囊藻生长影响的模拟实验[J].环境科学与技术,2013,36(6):45-49.ZHANG Bing,LI Feipeng,ZHANG Yuehong,et al.Simulation experiment on the effect of water disturbance on growth of Microcystis aeruginosa[J].Environmental Science&Technology(China),2013,36(6):45-49.
    [25]杨桂军,秦伯强,高光,等.角突网纹溞在太湖微囊藻群体形成中的作用[J].湖泊科学,2009,21(4):495-501.YANG Guijjun,QIN Boqiang,GAO Guang,et al.Effect of Ceriodaphnia cornuta in colony formation of Microcystis in Lake Taihu[J].Journal of Lake Science,2009,21(4):495-501.
    [26]张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,13(3):266-271.ZHANG Yunlin,QIN Boqiang,CHEN Weimin,et al.A study on total suspended matter in Lake Taihu[J].Resources and Environment in the Yangtze Basin,2004,13(3):266-271.
    [27]范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学,2003,33(8):760-768.
    [28]许海,吴雅丽,杨桂军,等.铜绿微囊藻、斜生栅藻对氮磷饥饿的耐受能力研究[J].生态科学,2014,33(5):879-884.XU Hai,WU Yali,YANG Guijun,et al.Tolerance of Microcystis aeruginosa and Scendesmus obliquus to nitrogen and phosphorus deficiency[J].Ecological Science,2014,33(5):879-884.
    [29]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:670-671.
    [30]王珂,高光,陈大庆.扰动对共培养条件下微囊藻生长的影响[C]中国水力学会.全国环境水力学学术研讨会会议论文集.宜昌:中国水力学会,2006,244-250.
    [31]江林燕,江成,周伟,等.水体扰动对铜绿微囊藻生长影响的规律及原因[J].环境化学,2012,31(2):216-220.JIANG Linyan,JIANG Cheng,ZHOU Wei,et al.Growth of Microcystis aeruginosa under different disturbance[J].Environmental Chemistry,2012,31(2):216-220.
    [32]颜润润,逄勇,陈晓峰,等.不同风等级扰动对贫富营养下铜绿微囊藻生长的影响[J].环境科学,2008,29(10):2749-2753.YAN Runrun,PANG Yong,CHEN Xiaofeng,et al.Effect of disturbance on growth of Microcystis aeruginosa in different nutrient levels[J].Environmental Science,2008,29(10):2749-2753.
    [33]HUANG Jian,XI Beidou,XU Qiujin,et al.Experiment study of the effects of hydrodynamic disturbance on the interaction between the cyanobacterial growth and the nutrients[J].Journal of Hydrodynamics,2016,28(3):411-422.
    [34]高月香,张毅敏,张永春.流速对太湖铜绿微囊藻生长的影响[J].生态与农村环境学报,2007,23(2):57-60.GAO Yuexiang,ZHANG Yimin,ZHANG Yongchun.Effects of flow velocity on growth of Microcystis aeruginosa in Taihu Lake[J].Journal of Ecology and Rural Environment,2007,23(2):57-60.
    [35]HONDZO M,LYN D.Quantified small-scale turbulence inhibits the growth of a green alga[J].Freshwater Biology,1999,41:51-61.
    [36]晋利,李晓亮.Cu2+对铜锈微囊藻生长及叶绿素荧光特性的影响[J].植物生理学报,2015,51(2):178-182.JIN Li,LI Xiaoliang.Effects of Cu2+on the growth and chlorophyll fluorescence of Microcystis aeruginosa[J].Plant Physiology Journal,2015,51(2):178-182.
    [37]瞿彪,吴宗文,谢伟,等.“渔光一体”对黄颡鱼养殖池塘浮游生物的影响[J].水产养殖,2015,36(7):6-9.QU Biao,WU Zhongwen,XIE Wei,et al.Effect of‘fishing light complementary’on plankton in catfish pond[J].Journal of Aquaculture,2015,36(7):6-9.
    [38]陈书秀,梁英.光照强度对雨生红球藻叶绿素荧光特性及虾青素含量的影响[J].南方水产,2009,5(1):1-8.CHEN Shuxiu,LIANG Ying.Effects of illumination on the chlorophyll fluorescence parameters and astaxanthin content of Haematococcus Pluvialis[J].South China Fisheries Science,2009,5(1):1-8.
    [39]江成.水体扰动对藻生长机制与QCS水库富营养化控制的影响研究[D].上海:上海交通大学,2014.
    [40]李林,朱伟.不同光照条件下水流对铜绿微囊藻生长的影响[J].湖南大学学报(自然科学版),2012,39(9):87-92.LI Lin,ZHU Wei.Effect of water flow under different light intensity on the growth of Microcystis aeruginosa[J].Journal of Hunan University(Natural Sciences),2012,39(9):87-92.
    [41]MITSUHASHI S,HOSAKA K,TOMONAGA E,et al.Effects of shear flow on photosynthesis in a dilute suspension of microalgae[J].Applied Microbiology Biotechnology,1995,42:744-749.