外源CaCl_2缓解番茄裂果的生理机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The physiological mechanism of exogenous CaCl_2 relieving tomato fruit cracking
  • 作者:崔守尧 ; 吴震 ; 吕海萌 ; 薛灵姿 ; 蒋芳玲
  • 英文作者:CUI Shouyao;WU Zhen;Lü Haimeng;XUE Lingzi;JIANG Fangling;College of Horticulture/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China,Ministry of Agriculture and Rural Affairs,Nanjing Agricultural University;
  • 关键词:番茄 ; 裂果 ; 外源CaCl_2 ; 抗氧化系统 ; 细胞壁 ; 离子
  • 英文关键词:tomato;;fruit cracking;;exogenous CaCl_2;;antioxidant system;;cell wall;;ions
  • 中文刊名:NJNY
  • 英文刊名:Journal of Nanjing Agricultural University
  • 机构:南京农业大学园艺学院/农业农村部华东地区园艺作物生物学与种质创新重点实验室;
  • 出版日期:2019-01-18
  • 出版单位:南京农业大学学报
  • 年:2019
  • 期:v.42;No.180
  • 基金:江苏省自然科学基金项目(BK20140712);; 中央高校基本科研业务费专项资金(KYZ201609)
  • 语种:中文;
  • 页:NJNY201901008
  • 页数:7
  • CN:01
  • ISSN:32-1148/S
  • 分类号:65-71
摘要
[目的]本文旨在从生理水平探究外源CaCl_2缓解番茄裂果的机制,为裂果的防控提供理论依据。[方法]以耐裂和易裂果番茄为材料,喷施10 g·L~(-1)CaCl_2溶液,统计番茄裂果率,测定抗氧化酶活性变化、相关离子(Ca~(2+)、K~+、Mg~(2+)、B~(3+))含量、细胞壁主要成分含量(纤维素和果胶)、细胞壁关键水解酶(纤维素酶和多聚半乳糖醛酸酶)活性。[结果]10 g·L~(-1)CaCl_2处理可以显著降低易裂果番茄的裂果率,降低果皮中过氧化氢(H_2O_2)和丙二醛(MDA)含量及抗氧化酶活性,使易裂番茄电导率显著下降。10 g·L~(-1)CaCl_2处理下,番茄果皮Ca~(2+)、K~+、B~(3+)的含量显著升高,Mg~(2+)含量下降;果皮中纤维素酶和多聚半乳糖醛酸酶活性降低,细胞壁中纤维素和果胶的含量增加。[结论]喷施CaCl_2处理可以降低番茄果实的氧化胁迫伤害,稳定细胞膜结构,促进番茄对Ca~(2+)、K~+、B~(3+)离子的吸收,减少对Mg~(2+)的吸收,使Ca~(2+)、B~(3+)与细胞壁更易结合,从而增加细胞壁的强度,缓解裂果的发生。
        [Objectives]The aim of this study is to investigate the physiological mechanism of tomato fruit cracking influenced by exogenous CaCl_2,which can provide a theoretical basis for the prevention of fruit cracking. [Methods]We adopted crack-resistant and crack-susceptible tomatoes as the plant materials with 10 g·L~(-1)CaCl_2 spraying as the treatment. And the fruit cracking rate,antioxidant enzyme activity,related ions( Ca~(2+),K~+,Mg~(2+),B~(3+)),cell wall components( pectin and cellulose) and the wall-metabolic hydrolases( cellulase and polygalacturonase) were then measured. [Results]The results showed that 10 g·L~(-1)CaCl_2 treatment significantly reduced the fruit crack rate in the crack-susceptible tomato. The contents of H_2O_2 and MDA and antioxidant enzyme activity decreased in tomato pericarp,the electrical conductivity reduced; the concentration of Ca~(2+),K~+,B~(3+)increased,and Mg~(2+)decreased significantly. Simultaneously,the activities of cellulase and polygalacturonase decreased,and cellulose and protopectin concentrations increased. [Conclusions]The treatment of exogenous CaCl_2 can prevent cell from oxidative damage,make the cell membrane structure more stable,improve the absorption of Ca~(2+),K~+,B~(3+),and prevent the absorption of Mg~(2+). Ca~(2+)and B~(3+)are easier to bind to cell wall,which would strengthen the cell wall. Exogenous CaCl_2 can reduce the occurrence of fruit splitting.
引文
[1] Opara L U,Studman C J,Banks N H. Sunlight affects the incidence of internal ring cracking and other physical attributes of‘Gala’apples[J].Journal of Tree Fruit Production,1997,2(1):45-52.
    [2] Khadivi-Khub A. Physiological and genetic factors influencing fruit cracking[J]. Acta Physiol Plant,2015,37(1):1718.
    [3]夏永秀,廖明安,邱利娜.甜樱桃裂果与防治研究进展[J].中国果树,2010(2):55-59.Xia Y X,Liao M A,Qiu L N. Progress of sweet cherry fruit cracking and prevention research[J]. China Fruits,2010(2):55-59(in Chinese).
    [4] Rupert M,Southwick S,Weis K,et al. Calcium chloride reduces rain cracking in sweet cherries[J]. California Agriculture,1997,51(5):35-40.
    [5] Yang Z,Wu Z,Zhang C,et al. The composition of pericarp,cell aging,and changes in water absorption in two tomato genotypes:mechanism,factors,and potential role in fruit cracking[J]. Acta Physiol Plant,2016,38(9):215.
    [6]李建国,黄旭明,黄辉白.裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较[J].植物生理与分子生物学学报,2003,29(2):141-146.Li J G,Huang X M,Huang H B. Composition of enzymatic activity related to cell-wall metabolism in different litchi cultivars[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):141-146(in Chinese with English abstract).
    [7] Wang Y,Long L E. Physiological and biochemical changes relating to postharvest splitting of sweet cherries affected by calcium application in hydrocooling water[J]. Food Chemistry,2015,181:241-247.
    [8]刘铁铮,徐继忠,王连荣,等.水果裂果研究进展[J].河北林果研究,2004,19(3):282-287.Liu T Z,Xu J Z,Wang L R,et al. Progress on the study of fruit cracking[J]. Hebei Journal of Forestry and Orchard Research,2004,19(3):282-287(in Chinese with English abstract).
    [9]陈硕,陈珈.植物中钙依赖蛋白激酶(CDPKs)的结构与功能[J].植物学通报,2001,18(2):143-148.Chen S,Chen J. The structure and function of calcium-dependent protein kinases in plants[J]. Chinese Bulletin of Botany,2001,18(2):143-148(in Chinese with English abstract).
    [10]章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用[J].植物生理学通讯,2000,36(2):146-153.Zhang W H,Chen Y H,Liu Y L. Calcium action in signal transduction in plant cells under salt stress[J]. Plant Physiology Communications,2000,36(2):146-153(in Chinese with English abstract).
    [11]赵晓美,王红梅,杨卫,等.钙对西瓜幼苗生长、光合特性及保护性酶活性的影响[J].北方园艺,2012(14):144-146.Zhao X M,Wang H M,Yang W,et al. Effect of different Ca2+concentrations on the growth,photosynthetic characteristics,protective enzyme activity of watermelon seedling[J]. Northern Horticulture,2012(14):144-146(in Chinese with English abstract).
    [12]梁颖,王三根,李帮秀.钙对离体水稻叶片和地上部衰老的影响[J].西南农业大学学报,1997,19(2):121-125.Liang Y,Wang S G,Li B X. Influence of calciumon the isolated shoot and leaf of rice seeding[J]. Journal of Southwest Agricultural University,1997,19(2):121-125(in Chinese with English abstract).
    [13]张川,王亚晨,崔守尧,等.耐裂果与易裂果番茄果实发育过程中果实组织衰老与裂果的关系[J].南京农业大学学报,2016,39(4):534-542. DOI:10.7685/jnau.201601035.Zhang C,Wang Y C,Cui S Y,et al. The relationship between fruit tissue senescence and fruit cracking in cracking-resistant and susceptible tomato during fruit ripening[J]. Journal of Nanjing Agricultural University,2016,39(4):534-542(in Chinese with English abstract).
    [14] Chakrabarty D,Datta S K. Micropropagation of gerbera:lipid peroxidation and antioxidant enzyme activities during acclimatization process[J].Acta Physiologiae Plantarum,2008,30(3):325-331.
    [15] Kumar G,Knowles N R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato(Solanum tuberosum)seed-tubers[J]. Plant Physiology,1993,102(1):115-124.
    [16] Bajji M,Bertin P,Lutts S,et al. Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro[J]. Australian Journal of Experimental Agriculture,2004,44(1):27-35.
    [17] Beauchamp C,Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry,1971,44(1):276-287.
    [18] Zhou W,Zhao D,Lin X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape(Brassica napus L.)[J]. Journal of Plant Growth Regulation,1997,16(1):47-53.
    [19] Aebi H. Catalase in vitro[J]. Methods in Enzymology,1984,105:121-126.
    [20] Mu1oz-Mu1oz J L,García-Molina F,García-Ruiz P A,et al. Enzymatic and chemical oxidation of trihydroxylated phenols[J]. Food Chemistry,2009,113(2):435-444.
    [21] Wheeler C R,Salzman J A,Elsayed N M,et al. Automated assays for superoxide dismutase,catalase,glutathione peroxidase,and glutathione reductase activity[J]. Analytical Biochemistry,1990,184(2):193-199.
    [22]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007.Cao J K,Jiang W B,Zhao Y M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetablles[M]. Beijing:China Light Industry Press,2007(in Chinese).
    [23]王保明,丁改秀,王小原,等.枣果实裂果的组织结构及水势变化的原因[J].中国农业科学,2013,46(21):4558-4568.Wang B M,Ding G X,Wang X Y,et al. Changes of histological structure and water potential of Huping jujube fruit cracking[J]. Scientia Agricultura Sinica,2013,46(21):4558-4568(in Chinese with English abstract).
    [24] Fobel M,Lynch D V,Thompson J E. Membrane deterioration in senescing carnation flowers[J]. Plant Physiology,1987,85:204-211.
    [25]段风琴.壶瓶枣裂果的钙素营养生理及施钙效果研究[D].太谷:山西农业大学,2016:25-40.Duan F Q. Influence of calcium on fruit cracking of jujube‘Huping’and its physiological mechanism[D]. Taigu:Shanxi Agricultural University,2016:25-40(in Chinese with English abstract).
    [26] Islam M Z,Mele M A,Baek J P,et al. Cherry tomato qualities affected by foliar spraying with boron and calcium[J]. Horticulture Environment and Biotechnology,2016,57(1):46-52.
    [27]李成忠.影响芍药花茎机械强度的生理机制研究[D].扬州:扬州大学,2013:36-46.LI C Z. Studies on physiological mechanism affecting the mechanical strength of inflorescence stem in herbaceous peony(Paeonia lacdflora Pall.)[D]. Yangzhou:Yangzhou University,2013:36-46(in Chinese with English abstract).
    [28]王宁,秦煊楠.矿质营养对锦橙裂果的影响[J].西南农业大学学报,1987,9(4):458-462.Wang N,Qin X N. Effect of mineral nutrition levels on fruit splitting in Jin-cheng orange[J]. Journal of Southwest Agricultural University,1987,9(4):458-462(in Chinese with English abstract).
    [29]林兰稳.矿质营养对荔枝裂果率的影响[J].土壤与环境,2001,10(1):55-56.Lin L W. Effects of mineral nutrition on fruit cracking rate of Litchi chinensis[J]. Soil and Environmental Sciences,2001,10(1):55-56(in Chinese with English abstract).
    [30]杨为海,曾辉,邹明宏,等.裂果发生与果皮细胞壁修饰的关系研究进展[J].热带作物学报,2011,32(10):1995-1999.Yang W H,Zeng H,Zou M H,et al. An overview of the roles of cell wall modification in fruit pericarp cracking[J]. Chinese Journal of Tropical Crops,2011,32(10):1995-1999(in Chinese with English abstract).
    [31]温明霞,石孝均.锦橙裂果的钙素营养生理及施钙效果研究[J].中国农业科学,2012,45(6):1127-1134.Wen M X,Shi X J. Influence of calcium on fruit cracking of Jincheng orange and its physiological mechanism[J]. Scientia Agricultura Sinica,2012,45(6):1127-1134(in Chinese with English abstract).
    [32] Liu G D,Wang R D,Wu L S,et al. Differential changes in cell-wall content and boron and calcium concentration in Newhall navel orange grafted on two rootstocks differing in boron-deficiency responses[J]. Communications in Soil Science and Plant Analysis,2015,46(4):439-453.