对称分布的三轴谐振陀螺仪的设计、分析与仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design,Analysis and Simulation of the Symmetrical Distribution of Three Axis Resonant Gyroscope
  • 作者:陈竟成 ; 许高斌 ; 马渊明 ; 陈兴
  • 英文作者:CHEN Jingcheng;XU Gaobin;MA Yuanming;CHEN Xing;Micro Electromechanical System Reaserch Center of Engineering and Technology of Anhui Province,School of Electronic Science & Applied Physics,Hefei University of Technology;
  • 关键词:三轴陀螺 ; 对称 ; 动力学分析 ; 抗过载 ; 模态匹配
  • 英文关键词:tri-axis gyroscope;;symmetrical;;dynamic analysis;;overload resistance;;mode matching
  • 中文刊名:CGJS
  • 英文刊名:Chinese Journal of Sensors and Actuators
  • 机构:合肥工业大学电子科学与应用物理学院安徽省MEMS工程技术研究中心;
  • 出版日期:2016-09-30 08:36
  • 出版单位:传感技术学报
  • 年:2016
  • 期:v.29
  • 基金:国家863计划项目(2013AA041101)
  • 语种:中文;
  • 页:CGJS201609006
  • 页数:6
  • CN:09
  • ISSN:32-1322/TN
  • 分类号:35-40
摘要
为了实现单片集成三轴陀螺仪,提出了一种完全对称的四方陀螺结构。介绍了该陀螺的结构设计及工作原理,给出了动力学简化模型,并给出了其动力学方程的详细推导。运用Ansys软件对陀螺结构进行了静态分析和模态分析,仿真结果表明,陀螺在施加100 GHz载荷下所受最大应力为1.942 MPa,陀螺各模态的固有频率分别为57.345 k Hz、57.382 k Hz以及57.395 k Hz,各模态间匹配性能较好。对陀螺结构的仿真研究的结果表明其抗过载及模态匹配满足陀螺的设计要求。
        A square symmetrical tri-axis gyroscope structure was proposed to realize the monolithic integrated threeaxis gyroscope. Firstly,the idea of design and working principle of the gyroscope was introduced,while the dynamicmodel with its dynamic equation was given. Then,the structure static analysis and modal analysis was simulated byusing the Ansys software. The simulation results shows that the maximum stress under the applied load of 100 GHZ under load is 1.942 MPa,while the Natural frequencies of each mode are 57.345 k Hz,57.382 k Hz and57.395 k Hz,which means that the matching performance between modal is good. The simulation for this gyroscopestructure demonstrate that the mode matching performance and resistance to overload and meet the design require-ments for the tri-axis gyroscope.
引文
[1]许宜申,王寿荣,王元山.单片三轴归为机械振动陀螺仪研究[J].高技术通讯,2006,10(16):1034-1038.
    [2]Benedetto Vigna.Tri-Axial MEMS Gyroscope and Six Degree-OfFreedom Motion Sensors[C]//International Electron Devices Meeting(IEDM),2011 IEEE International,2011:29.1.1-29.1.3.
    [3]Giomi E,Fanucci L,Rocchi A.Analog-CMDA Based Interfaces for MEMS Gyroscopes[J].Microelectronics Journal,2014,45:78-88.
    [4]谭秋林,石云波,张文栋.具有栅结构与静电梳齿驱动的电容式微机械陀螺的仿真、设计与测试[J].纳米技术与精密工程,2011,9(3):207-211.
    [5]殷勇,王寿荣,王存超.一种双质量硅微陀螺仪[J].中国惯性技术学报,2008,16(6):703-711.
    [6]杨晓波,李德胜,刘本东.一种微机械陀螺仪仿真分析[J].仪器仪表学报,2006,27(6):957-959.
    [7]李博,杨拥军,徐永青.一种集成硅式硅MEMS振动陀螺仪[J].MEMS与传感器,2013,50(8):501-505.
    [8]赵幸娟,王瑞荣,石云波.电容式硅微机械陀螺仪结构设计及仿真[J].功能材料与器件学报,2011,17(2):333-337.
    [9]郭慧芳,李锦明,刘俊.三框架电容式硅微机械陀螺动力学分析[J].传感器与微系统,2008,27(5):24-26.
    [10]刘梅,周百令,夏敦柱.对称解耦硅微陀螺仪结构设计研究[J].传感技术学报,2008,21(3):435-438.
    [11]许昕,何杰,王文.微机械陀螺仪的新进展及发展趋势[J].压电与声光,2014,36(4):588-595.
    [12]夏敦柱,孔伦,虞成.四模态匹配三轴硅微陀螺仪[J].光学精密工程,2013,21(9):2326-2332.
    [13]陆学斌,刘晓为,陈伟平.振动式微机械陀螺的带宽特性分析[J].传感技术学报,2008,21(2):337-340.
    [14]Cenk Acar,Andrei Shkel.MEMS Vibratory Gyroscopes Structural Approaches to Improve Robustness[M].Springer,2009:32-35.
    [15]Antonello R,Oboe R.Exploring the Potential of MEMS Gyroscope:Successfully Using Sensors in Typical Industrial Motion Control Applications[J].IEEE Industrial Electronics Magazine,2012,6(1):14-24.
    [16]曹慧亮,李宏生,申冲.基于偶极子补偿法的硅微机械陀螺仪带宽拓展[J].仪器仪表学报,2015,36(11):2427-2434.