纳米TCP颗粒在骨修复用复合材料中分散性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of research on dispersion of nano-TCP particles in composite materials for bone repair
  • 作者:刘来俊 ; 张天添 ; 丁雯 ; 王富军 ; 王璐
  • 英文作者:Liu Laijun;Zhang Tiantian;Ding Wen;Key Laboratory of Textile Science & Technology, Ministry of Education,College of Textiles, Donghua University;
  • 关键词:骨修复 ; nano-TCP颗粒 ; 可吸收高聚物 ; 团聚 ; 改性
  • 英文关键词:Bone repair;;Nano-TCP particles;;Absorbable polymer;;Agglomeration;;Modification
  • 中文刊名:SWGK
  • 英文刊名:Orthopaedic Biomechanics Materials and Clinical Study
  • 机构:东华大学纺织学院纺织面料技术教育部重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:生物骨科材料与临床研究
  • 年:2019
  • 期:v.16;No.94
  • 基金:“111计划”(b07024);; 中央高校基本科研基金(2232015a3-02和16d110119);; 上海市科技支撑计划(16441903803);; 国家博士后基金(2016m590299)
  • 语种:中文;
  • 页:SWGK201903018
  • 页数:5
  • CN:03
  • ISSN:42-1715/R
  • 分类号:69-72+76
摘要
运用骨组织工程技术修复骨缺损是近年来研究的热点,其中对骨组织工程技术中关键要素之一的骨修复材料的研究最为深入。纳米TCP(nano-TCP)/可吸收高聚物复合材料因其优良的骨传导性、骨生成性及骨诱导性而备受关注,但由于nano-TCP颗粒团聚而引起的复合材料性能的恶化仍然是当下研究的难点。本文从nanoTCP颗粒分散性的研究意义、团聚原理以及改善分散性的方法 3个方面进行文献综述与讨论,期望为进一步改善nano-TCP/可吸收高聚物复合材料的应用性能提供参考。
        The use of bone tissue engineering technology to repair bone defects has been a hot topic in recent years. Among them, the research on bone repair materials, one of the key elements in bone tissue engineering technology, is the most in-depth. nano-TCP/absorbable polymer composites have attracted much attention due to their excellent osteoconductivity,osteogenicity and osteoinductivity. However, the deterioration of composite properties due to agglomeration of nano-TCP particles is still a difficult point in current research. This paper reviews and discusses the research significance of nanoTCP particle dispersibility, the mechanism of agglomeration and the method of improving dispersibility. It is expected to provide reference for further improving the application performance of nano-TCP/absorbable polymer composites.
引文
[1]Zhang J,Barbier I D,Ten HH,et al.Microporous calcium phosphate ceramics driving osteogenesis through surface architecture[J].Journal of Biomedical Materials Research Part A,2015,103(3):1188-1199.
    [2]Jones JR,Ehrenfried LM,Hench LL.Optimising bioactive glass scaffolds for bone tissue engineering[J].Biomaterials,2006,27(7):964-973.
    [3]Gibson IR,Rehman I,Best SM,et al.Characterization of the transformation from calcium-deficient apatite to beta-tricalcium phosphate[J].Journal of Materials Science-Materials in Medicine,2000,11(12):799-804.
    [4]Dorozhkin SV.Calcium orthophosphate cements for biomedical application[J].Journal of Materials Science,2008,43(9):3028-3057.
    [5]Zhu J,Li L,Wang Q.Effect of-tricalcium phosphate on the thermal foaming behavior of poly(vinyl alcohol)/water system[J].Journal of Applied Polymer Science,2017,134(16):44737.
    [6]Huang SH,Hsu TT,Huang TH,et al.Fabrication and characterization of polycaprolactone and tricalcium phosphate composites for tissue engineering applications[J].Journal of Dental Sciences,2017,12(1):33-43.
    [7]Ehrenfried LM,PateL MH,Cameron RE.The effect of tri-calcium phosphate(TCP)addition on the degradation of polylactide-coglycolide(PLGA)[J].Journal of Materials Science-Materials in Medicine,2008,19(1):459-466.
    [8]Ferri JM,Gisbert I,Garciasanoguera D,et al.The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid)[J].Journal of Composite Materials,2016,50(30):4189-4198.
    [9]Daculsi G,Goyenvalle E,Cognet R,et al.Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model[J].Biomaterials,2011,32(12):3166-3177.
    [10]Yang Y,Tang G,Zhao Y,et al.Effect of degradation of PLGA and PLGA/beta-TCP scaffolds on the growth of osteoblasts[J].Chinese Science Bulletin,2011,56(10):982-986.
    [11]Schiller C,Epple M.Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters[J].Biomaterials,2003,24(12):2037-2043.
    [12]梁猛,陈浩,魏坤.不同量-TCP对PLGA微球支架的抗压强度、孔隙率和细胞相容性的影响[J].高校化学工程学报,2016,30(4):871-877.
    [13]Barber FA,Spenciner DB,Bhattacharyya S,et al.Biocomposite Implants Composed of Poly(Lactide-co-Glycolide)/beta-Tricalcium Phosphate:Systematic Review of Imaging,Complication,and Performance Outcomes[J].Arthroscopy-the Journal of Arthroscopic and Related Surgery,2017,33(3):683-689.
    [14]Ma F,Chen S,Liu P,et al.Improvement of beta-TCP/PLLA biodegradable material by surface modification with stearic acid[J].Materials science&engineering.C,Materials for biological applications,2016,62:407-413.
    [15]Balac I,Uskokovic PS,Aleksic R,et al.Predictive modeling of the mechanical properties of particulate hydroxyapatite reinforced polymer composites[J].Journal of Biomedical Materials Research,2002,63(6):793-799.
    [16]Bennett SM,Arumugam M,Wilberforce S,et al.The effect of particle size on the in vivo degradation of poly(D,L-lactide-co-glycolide)/alpha-tricalcium phosphate micro-and nanocomposites[J].Acta Biomaterialia,2016,45:340-348.
    [17]Yang Z,Best SM,Cameron RE.The Influence of alpha-Tricalcium Phosphate Nanoparticles and Microparticles on the Degradation of Poly(D,L-lactide-co-glycolide)[J].Advanced Materials,2009,21(38-39):3900-3904.
    [18]Smoak M,HogaNK,Kriegh L,et al.Modulation of mesenchymal stem cell behavior by nano-and micro-sized beta-tricalcium phosphate particles in suspension and composite structures[J].Journal of Nanoparticle Research,2015,17(4):1-14.
    [19]王建彪.尺寸效应对微纳米结构力学行为及性质的影响研究[D].兰州:兰州大学,2015.
    [20]Zou J,Zhou Z,Ruan J,et al.Fabrication of degradable bone-like substitutes based on poly-L-lactide and-tricalcium phosphate[J].Journal of Macromolecular Science Part B-Physics,2010,49(4):781-790.
    [21]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社材料科学与工程出版中心,2003:35.
    [22]李勇.-磷酸三钙表面改性及复合骨支架材料研究[D].成都:四川大学,2004.
    [23]Jiao Y,Zhang XX,Kong FC,et al.Discrete element simulation of impact disaggregation for wet granule agglomerate[J].Acta Physica Sinica,2015,64(15):154501.
    [24]Abdelfatah E,Kang K,Pournik M,et al.Mechanistic study of nanoparticles deposition and release in porous media[J].Journal of Petroleum Science and Engineering,2017,157:816-832.
    [25]Mezzasalma SA.Effect of mixing entropy on the static yield stress of a liquid dispersion of solid particles:Comparison between Si3N4and Ca3(PO4)2aqueous suspensions[J].Journal of Colloid and Interface Science,1997,190(2):302-306.
    [26]Huang Y,Liu D,Anguilano L,et al.Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1 beta-TCP composite[J].下转第页Materials Science&Engineering C-Materials for Biological Applications,2015,54:120-132.
    [27]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [28]Mirjalili F,Mohammadi H,Azimi M,et al.Synthesis and characterization of beta-TCP/CNT nanocomposite:Morphology,microstructure and in vitro bioactivity[J].Ceramics International,2017,43(10):7573-7580.
    [29]王彩.有机改性羟基磷灰石的制备及吸附性能研究[D].沈阳:沈阳大学,2013.
    [30]Wang X,Zhai S,Xie T.Mechanism behind the improvement of coupling agent in interface bonding performance between organic transparent resin and inorganic cement matrix[J].Construction and Building Materials,2017,143:138-146.
    [31]Bareiro OF,Santos LA.Polydimethylsiloxane/Calcium Phosphates Composites:Effect of the Fillers Modification on the Cross-Linking and Surface Energy[J].Materials Science Forum,2012,727-728:1175-1180.
    [32]Li Y,Zhang Y,Yin G,et al.Surface modification in manufacture of beta-tricalcium phosphate/poly(L-lactic acid)composite scaffold materials[J].Journal of Functional Materials,2005,36(2):298-300.
    [33]Zou J,Jiang X,Zhang J,et al.Preparation and characterization of surface-modified-tricalcium phosphate/ploy(L-lactide)biocomposites[J].Advanced Materials Research,2011,197-198:120-126.
    [34]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005:1650.
    [35]Bolbasov EN,Rybachuk M,Golovkin AS,et al.Surface modification of poly(L-lactide)and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target[J].Materials Letters,2014,132(10):281-284.