14份柳枝稷种质资源苗期耐镉性综合评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum virgatum) cultivars in the seedling stage
  • 作者:胡冰钰 ; 方志刚 ; 娄来清 ; 蔡庆生
  • 英文作者:HU Bing-yu;FANG Zhi-gang;LOU Lai-qing;CAI Qing-sheng;College of Life Sciences,Nanjing Agricultural University;College of Life and Geographic Sciences,Kashi University;
  • 关键词:柳枝稷 ; 耐镉性 ; 隶属函数 ; 综合评价
  • 英文关键词:switchgrass;;cadmium tolerance;;subordination function;;comprehensive evaluation
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:南京农业大学生命科学学院;喀什大学生命与地理科学学院;
  • 出版日期:2019-01-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.162
  • 基金:国家自然科学基金(No.31372359)资助
  • 语种:中文;
  • 页:CYXB201901005
  • 页数:10
  • CN:01
  • ISSN:62-1105/S
  • 分类号:30-39
摘要
镉(Cd)是环境中常见的非生物胁迫因子,从种质资源中筛选出不同耐镉型的植物材料有利于能源植物在重金属污染土地上的高效开发利用。基于此,本研究以14个能源植物柳枝稷品种为供试材料,外源施加浓度为10μmol·L~(-1)镉,结合形态和生理指标,采用隶属函数及标准差系数权重法综合评价了柳枝稷幼苗对Cd的耐受性。结果表明:10μmol·L~(-1) Cd胁迫显著降低了柳枝稷根长、根表面积、根尖数、总生物量、净光合速率及根系活力,且品种间差异显著(P<0.01)。根据隶属函数法得到柳枝稷对镉耐受性综合评价值(D),其中Kanlow最高,Forestburg最低。采用系统聚类法对D值进行聚类分析,结果表明,14份柳枝稷可分为3组不同耐镉型材料,其中强耐镉型材料1份,为Kanlow;中等耐镉型材料9份,分别为Alamo、BoMaster、Carthage、Cave in Rock、Longisland、Newyork、Shawnee、Sunburst、Trailblazer;镉敏感型材料4份,分别为Blackwell、Dacotah、Forestburg、Shelter。结合柳枝稷对Cd的吸收,进一步分析发现耐镉性较强的品种镉富集能力也较强。可为选择适宜的柳枝稷材料种植于镉污染土地上提供理论依据,同时为丰富评价植物耐镉种质资源提供可操作性的方法。
        Cadmium(Cd)is a common abiotic stress factor in the environment.Screening germplasm resources for Cd tolerance is an effective way to develop plants for use in biofuel production on land contaminated by heavy metals.Switchgrass(Panicum virgatum)has been identified by the U.S.Department of Energy as having very high potential as a biofuel substrate.Hence,14 switchgrass cultivars under hydroponic culture were treated with 0(control)or 10μmol·L~(-1) Cd,and morphological and physiological traits were investigated.Root morphology data of switchgrass were obtained using an EPSON scanner and WinRHIZO software.Net photosynthetic rate was determined with the LiCor-6400 portable photosynthesis system and a spectrophotometer was used to determine root activity.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)was used to examine Cd accumulation of switchgrass.Data for measured traits were transformed to units of statistical standard deviation by division by their standard error and aggregated with positive/negative sign reversal where relevant,so that Cd tolerance was additive across traits,and a composite index of Cd tolerance compiled.Lastly a cluster analysis was performed.It was found that Cd stress significantly reduced the root length,root surface area,number of root tips,total dry weight,net photosynthetic rate and root activity of different switchgrass cultivars to different degrees.Significant differences were found(P<0.01)among cultivars.According to composite index(Dvalue),Kanlow was the most tolerant variety,while Foreburg was the least tolerant.On cluster analysis,the 14 switchgrass cultivars were classified into 3Cd-tolerance types.One cultivar(Kanlow)had high Cd tolerance;9cultivars(Alamo,BoMaster,Carthage,Cave in Rock,Long Island,Newyork,Shawnee,Sunburst,Trailblazer)were medium-cadmium-tolerance types and 4cultivars(Blackwell,Dacotah,Foresburg,Shelter)were Cd-sensitive types.It was also found that the cultivar Kanlow with high Cd tolerance had a strong ability to accumulate Cd.This study provides a theoretical basis for selecting suitable switchgrass cultivars for the cultivation of Cd-polluted land,and the results illustrate an operable method to evaluate the Cd tolerance of plant germplasm lines.
引文
[1] Liu X,Fan Z X,Zhang B,et al.Cadmium pollution of soil and its remediation in China.Shandong Agricultural Sciences,2007,(6):94-97.柳絮,范仲学,张斌,等.我国土壤镉污染及其修复研究.山东农业科学,2007,(6):94-97.
    [2] Yu P,Gao F,Liu J,et al.Effect of Cd on plant growth and its tolerance mechanism.Chinese Agricultural Science Bulletin,2017,33(11):89-95.俞萍,高凡,刘杰,等.镉对植物生长的影响和植物耐镉机制研究进展.中国农学通报,2017,33(11):89-95.
    [3] Clemens S,Ma J F.Toxic heavy metal and metalloid accumulation in crop plants and foods.Annual Review of Plant Biology,2016,67(1):489.
    [4] You H M.Research progress of heavy metal contaminated soil remediation.Environment and Development,2017,29(6):122,124.尤洪梅.重金属污染的土壤修复的研究进展.环境与发展,2017,29(6):122,124.
    [5] Rizwan M,Ali S,Adrees M,et al.A critical review on effects,tolerance mechanisms and management of cadmium in vegetables.Chemosphere,2017,182:90-105.
    [6] de Souza Costa E T,Guilherme L R G,de MeloE C,et al.Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes.Biological Trace Element Research,2012,145(1):93-100.
    [7] Zhang X Z,Zhang H J,Li T X,et al.Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources.Chinese Journal of Eco-Agriculture,2013,21(11):1434-1440.张锡洲,张洪江,李廷轩,等.水稻镉耐性差异及镉低积累种质资源的筛选.中国生态农业学报,2013,21(11):1434-1440.
    [8] Xin Y W,Liang C H,Du L Y,et al.Accumulation and translocation of cadmium in different maize cultivars.Journal of AgroEnvironment Science,2017,36(5):839-846.辛艳卫,梁成华,杜立宇,等.不同玉米品种对镉的富集和转运特性.农业环境科学学报,2017,36(5):839-846.
    [9] Liu W L,Wang K R,Wang M L,et al.Physiological responses of different peanut(Arachis hypogaea L.)varieties to cadmium.Chinese Journal of Applied Ecology,2009,20(2):451-459.刘文龙,王凯荣,王铭伦,等.花生对镉胁迫的生理响应及品种间差异.应用生态学报,2009,20(2):451-459.
    [10] Lee K K,Han S C,Yong C M,et al.Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures.Ksce Journal of Civil Engineering,2013,17(1):44-50.
    [11] Pandey V C,Bajpai O,Singh N.Energy crops in sustainable phytoremediation.Renewable&Sustainable Energy Reviews,2016,54:58-73.
    [12] Torrez V C,Johnson P J,Boe A,et al.Erratum to:Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass.Bioenergy Research,2013,6(3):1126.
    [13] Li G Y,Li J L,Wang Y,et al.Research progress on the clean bio-energy production from high yield Panicum virgatum.Pratacultural Science,2008,25(5):15-21.李高扬,李建龙,王艳,等.利用高产牧草柳枝稷生产清洁生物质能源的研究进展.草业科学,2008,25(5):15-21.
    [14] Liu J L,Zhu W B,Xie G H,et al.The development of Panicum virgatum as an energy crop.Acta Prataculturae Sinica,2009,18(3):232-240.刘吉利,朱万斌,谢光辉,等.能源作物柳枝稷研究进展.草业学报,2009,18(3):232-240.
    [15] Liu C H,Lou L Q,Deng J X,et al.Morph-physiological responses of two switchgrass(Panicum virgatum L.)cultivars to cadmium stress.Grassland Science,2016,62(2):92-101.
    [16] Liu C H,Lou L Q,Guo T,et al.Preliminary research on Cd-tolerance of Panicum virgatumand Panicum maximum.Acta Prataculturae Sinica,2015,24(11):100-108.刘长浩,娄来清,郭涛,等.柳枝稷和坚尼草的耐镉性初步研究.草业学报,2015,24(11):100-108.
    [17] Lemus R,Brummer E C,Moore K J,et al.Biomass yield and quality of 20switchgrass populations in southern Iowa,USA.Biomass&Bioenergy,2002,23(6):433-442.
    [18] Du F,Chen X,Yang C H,et al.Effects of NaCl stress on seed germination and seedling growth of different switchgrass materials.Acta Agrestia Sinica,2011,19(6):1018-1024.杜菲,陈新,杨春华,等.NaCl胁迫对不同柳枝稷材料种子萌发与幼苗生长的影响.草地学报,2011,19(6):1018-1024.
    [19] Huo W,Zhuang C H,Cao Y,et al.Paclobutrazol and plant-growth promoting bacterial endophyte Pantoeasp.enhance copper tolerance of guinea grass(Panicum maximum)in hydroponic culture.Acta Physiologiae Plantarum,2012,34(1):139-150.
    [20] Su Y,Liu J,Lu Z,et al.Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation.Environmental&Experimental Botany,2014,97(1):40-48.
    [21] Yan H,Wu L,Filardo F,et al.Chemical and hydraulic signals regulate stomatal behavior and photosynthetic activity in maize during progressive drought.Acta Physiologiae Plantarum,2017,39(6):125.
    [22] Wang B,Ma J J,Sun X H,et al.The effects of different water supplies on root vigor of winter wheat.China Rural Water and Hydropower,2017,(3):41-44,49.王兵,马娟娟,孙西欢,等.水分调控对冬小麦根系活力的影响研究.中国农村水利水电,2017,(3):41-44,49.
    [23] Shi Y H,Wan L Q,Liu J N,et al.Analysis of the principal components and the subordinate function of Lolium perenne drought resistance.Acta Agrestla Sinica,2010,18(5):669-672.石永红,万里强,刘建宁,等.多年生黑麦草抗旱性主成分及隶属函数分析.草地学报,2010,18(5):669-672.
    [24] Zhu Y,Fan X F,Wu J Y,et al.Comprehensive evaluation of tolerance of switchgrass to nitrogen-deficiency stress at seedling stage.Chinese Journal of Grassland,2013,35(4):66-70.朱毅,范希峰,武菊英,等.柳枝稷苗期对氮素胁迫耐受性的综合评价.中国草地学报,2013,35(4):66-70.
    [25] Fang Z G,Hu Z Y,Zhao H H,et al.Screening for cadmium tolerance of 21cultivars from Italian ryegrass(Lolium multiflorum Lam)during germination.Grassland Science,2017,63(1):36-45.
    [26] Tian X X,Li L,Mao P C,et al.Analysis of Cd-tolerance and determination of Cd-tolerance evaluation indicators in Iris lactea at seedling stage.Journal of Nuclear Agricultural Sciences,2018,32(3):591-599.田小霞,李丽,毛培春,等.马蔺苗期耐镉性分析及鉴定指标筛选.核农学报,2018,32(3):591-599.
    [27] Seregin I V,Ivanov V B.Physiological aspects of cadmium and lead toxic effects on higher plants.Russian Journal of Plant Physiology,2001,48(4):523-544.
    [28] Fernández R,Bertrand A,Reis R,et al.Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa(L.)Greuter.Journal of Hazardous Materials,2013,244/245(2):555-562.
    [29] Tai Z L,Yin X Q,Fang Z G,et al.Exogenous GR24alleviates cadmium toxicity by reducing cadmium uptake in switchgrass(Panicum virgatum)seedlings.International Journal of Environmental Research and Public Health,2017,14(8):852.
    [30] Pérez-Romero J A,Redondo-Gómez S,Mateos-Naranjo E.Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions.Plant Physiology&Biochemistry,2016,109:103-113.
    [31] Masle J,Farquhar G D.Effects of soil strength on the relation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings.Plant Physiology,1988,86(1):32-38.
    [32] Vassilev A,Lidon F,Scotti P,et al.Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants.Biologia Plantarum,2004,48(1):153-156.
    [33] Zhang F G,Xiao X,Yan G X,et al.Development of evaluation method for cadmium tolerance in Brassica napus seedlings.Chinese Journal of Oil Crop Sciences,2017,39(1):47-54.张付贵,肖欣,闫贵欣,等.甘蓝型油菜幼苗期耐镉性评价方法的研究.中国油料作物学报,2017,39(1):47-54.
    [34] Fan Z X,Li S C,Sun H L.Physiological response of Amorpha fruiticosato drought stress under paclobutrazol application and an evaluation of drought resistance.Acta Prataculturae Sinica,2017,26(3):132-141.范志霞,李绍才,孙海龙.多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价.草业学报,2017,26(3):132-141.
    [35] Wang Y,Jia Z L,Ren D X,et al.Evaluation on advanced lines of potato drought-resistance traits by subordinate function values analysis.Seed,2017,36(6):72-75.王燕,贾智麟,任冬雪,等.隶属函数法评价马铃薯高代品系材料的抗旱性.种子,2017,36(6):72-75.
    [36] Liu C H.The tolerance and morph-physiological response of switchgrass to cadmium.Nanjing:Nanjing Agricultural University,2016.刘长浩.柳枝稷的耐镉性及其对镉的形态生理响应.南京:南京农业大学,2016.
    [37] Cao X,Jiang F,Wang X,et al.Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage.Euphytica,2015,205(2):569-584.
    [38] Mohammed A K,Kadhem F A.Screening drought tolerance in bread wheat genotypes(Triticum aestivum L.)using drought indices and multivariate analysis.The Iraqi Journal of Agricultural Science,2017,48:41.
    [39] Uraguchi S,Fujiwara T.Cadmium transport and tolerance in rice:perspectives for reducing grain cadmium accumulation.Rice,2012,5(1):5.
    [40] Sipos G,Solti A,Czech V,et al.Heavy metal accumulation and tolerance of energy grass(Elymus elongatus subsp.ponticus cv.Szarvasi-1)grown in hydroponic culture.Plant Physiology&Biochemistry,2013,68(7):96-103.
    [41] Wu G R,Yan Z L.Effects of Cd on the growth and osmotic adjustment regulation contents of Aegiceras conrniculatumseedlings.Ecology&Environment,2006,15(5):1003-1008.吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响.生态环境学报,2006,15(5):1003-1008.