混杂纤维水泥基复合材料轴心受压应力-应变关系研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH ON STRESS-STRAIN RELATIONSHIP OF HYBRID FIBER CEMENT COMPOSITES UNDER AXIAL COMPRESSION
  • 作者:闫维明 ; 王志超 ; 钱增志 ; 何浩祥 ; 崔涛
  • 英文作者:YAN Weiming;WANG Zhichao;QIAN Zengzhi;HE Haoxiang;CUI Tao;Beijing Laboratory of Earthquake Engineering and Structure Retrofit,Beijing University of Technology;China Railway Construction Group Co.,Ltd.;
  • 关键词:混杂纤维 ; 峰值应力 ; 峰值应变
  • 英文关键词:hybrid fiber;;peak stress;;peak strain
  • 中文刊名:GYJZ
  • 英文刊名:Industrial Construction
  • 机构:北京工业大学工程抗震与结构诊治北京市重点实验室;中铁建设集团有限公司;
  • 出版日期:2019-06-20
  • 出版单位:工业建筑
  • 年:2019
  • 期:v.49;No.557
  • 基金:国家重点研发计划(2017YFC1500600);; 中铁建设集团有限公司科技发展计划(LX16-07)
  • 语种:中文;
  • 页:GYJZ201906028
  • 页数:6
  • CN:06
  • ISSN:11-2068/TU
  • 分类号:146-151
摘要
在混杂纤维总体积掺量为2%的条件下,改变钢纤维、聚丙烯纤维和聚乙烯醇纤维的体积掺量,设计制作了两类混杂纤维水泥基试块,通过轴心受压试验,分别研究钢-聚丙烯和聚乙烯醇-聚丙烯混杂纤维水泥基复合材料的轴心受压应力-应变关系,并提出了不同纤维掺量变化对峰值应力、峰值应变影响的计算式。结果表明:钢纤维和聚乙烯醇纤维能提高试块的抗压强度,聚丙烯纤维能显著提高试块的峰值应变,当聚丙烯纤维体积掺量大于0. 5%时,混杂纤维水泥基复合材料的抗压强度会低于基体。
        Under the condition that the total volume of the hybrid fiber was 2%,the volumes of steel fiber,polypropylene fiber,and polyvinyl alcohol fiber were changed. Two kinds of cement fiber-based test blocks were designed and manufactured,and the axial compression test was conducted. The stress-strain relationships of steelpolypropylene and polyvinyl alcohol-polypropylene hybrid fiber cement-based composites under axial compression were studied and the formulae for the effect of different fiber content changes on peak stress and peak strain were proposed.The results showed that the steel fiber and polyvinyl alcohol fiber can improved the compressive strength of the test block,and the polypropylene fiber could significantly increase the peak strain of the test block. When the volume content of the polypropylene fiber was greater than 0. 5%,the compressive strength of hybrid fiber cement composites would be lower than that of the substrate.
引文
[1]沈荣熹,崔琪,李清海.新型纤维增强水泥复合材料[M].北京:中国建材工业出版社,2004.
    [2]潘钻峰,汪卫,孟少平,等.混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J].同济大学学报(自然科学版),2015. 43(1):33-40.
    [3]王成启,吴科如.混杂纤维水泥基复合材料及其应用[J].工业建筑,2002,32(9):51-53.
    [4] TAMAS F,BALAZS G L. High Performance Fiber Reinforced Cement Composites(HPFRCC 2)[J]. Cement&Concrete Research,1995,31(5):801-802.
    [5]李淑进,吴科如.钢-PP纤维混杂水泥基材料的力学行为研究[J].混凝土与水泥制品,2005(4):35-37.
    [6] LI V C. Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite[J]. ACI Materials Journal,2001,98:483-492.
    [7]徐世烺,蔡向荣,张英华.超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J].土木工程学报,2009(11):79-85.
    [8]张元元.钢-聚丙烯混杂纤维混凝土单轴受压本构关系与受拉性能研究[D].武汉:武汉大学,2010.
    [9]王振波.聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究[D].北京:清华大学,2016.
    [10]张志伟.混合纤维增强水泥基复合材料的力学性能试验及数值模拟[D].广州:华南理工大学,2013.
    [11]中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国工业建筑出版社,2010.
    [12]徐礼华,梅国栋,黄乐,等.钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J].土木工程学报,2014(7):35-45.
    [13]秦萌.高延性纤维混凝土受压力学性能试验研究[D].西安:西安建筑科技大学,2014.