冻结土壤介电常数混合模型机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the permittivity mixing model of freezing soil
  • 作者:靳潇 ; 杨文 ; 赵剑琦
  • 英文作者:JIN Xiao;YANG Wen;ZHAO Jianqi;Key Laboratory of Land Process and Climate Change in Cold Arid Regions,Northwest Institute of Eco-Environmental and Resources,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of Atmospheric Physics,Chinese Academy of Sciences;
  • 关键词:冻结土壤介电常数 ; 未冻水介电常数 ; Stern双电层 ; Maxwell-Garnett混合理论 ; 介电常数容积混合模型
  • 英文关键词:permittivity of frozen soil;;permittivity of unfrozen water;;Stern-Gouy double layer theory;;Maxwell-Garnett mixing theory;;dielectric volume hybrid model
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:中国科学院西北生态环境资源研究院寒区旱区陆面过程与气候变化重点实验室;中国科学院大学;中国科学院大气物理研究所;
  • 出版日期:2018-06-25
  • 出版单位:冰川冻土
  • 年:2018
  • 期:v.40
  • 基金:国家自然科学基金项目(41475018)资助
  • 语种:中文;
  • 页:BCDT201803016
  • 页数:10
  • CN:03
  • ISSN:62-1072/P
  • 分类号:162-171
摘要
介电常数是微波辐射传输理论所需的最重要、最基本的参数。通过研究平均温度低于-4℃,组分中含有冰的土壤——冻结土壤,建立了一种适用于微波波段冻结土壤的介电常数混合模型。该模型考虑了土壤温度、微波频率、土壤质地以及其中未冻水含量的影响。模型使用一点法计算未冻水含量,引入Stern双电层理论计算冻结土壤未冻水的介电常数,引入Maxwell-Garnett介电常数混合理论、介电常数容积混合理论构建冻结土壤介电常数混合模型。模型计算结果与实测资料进行了详细的对比分析,冻结土壤介电常数混合模型给出的介电常数实部、虚部的曲率与实验结果很好吻合,模型结果比较满意,对比分析证实了模型的可靠性。
        Permittivity is the most important and basic parameter in microwave radiative transfer theory. The frozen soil studied in this paper refers to the soil containing ice at the average temperature below-4 ℃. In this paper,a newpermittivity mixing model for microwave frozen soil has developed,in which the effects of soil temperature,frequency,soil texture and unfrozen water content have taken into account. The newpermittivity mixing model uses a point method to calculate the unfrozen water content,uses Stern-Gouy double layer theory to calculate permittivity of unfrozen water,uses Maxwell-Garnett mixing theory and mixing permittivity volume theory to establish dielectric constant mixture model of frozen soil. Comparison and analysis of the theoretical and experimental dielectric constants showed that curves of the imaginary part and real part of the model agree well with the experimental results,respectively. The comparison results are satisfactory and the reliability of the model is proved.
引文
[1]Xu Xiaozu,Wang Jiacheng,Zhang Lixin.Physics of frozen soil[M].Beijing:Science Press,2010.[徐敩祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2010.]
    [2]Lakhtakia A.Size-dependent Maxwell-Garnett formula from an integral equation formalism[J].Optik,1992,91(3):134-137.
    [3]Garnett J C M.Colors in metal glasses,in metallic films,and in metallic solutions,II[J].Philosophical Transactions of the Royal Society of London,1906(205):237-288.
    [4]Brown R G W.Absorption and scattering of light by small particles[J].Optica Acta:International Journal of Optics,1998,31(1):3.
    [5]Jones S B,Or D.Modeled effects on permittivity measurements of water content in high surface area porous media[J].Physics of Condensed Matter,2003,338(1):284-290.
    [6]Friedman S P.A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media[J].Water Resources Research,1998,34(11):2949-2961.
    [7]Bruggeman D A G.The calculation of various physical constants of heterogeneous substances:the dielectric constants and conductivities of mixtures composed of isotropic substances[J].Annals of Physics,1935(24):636-791.
    [8]Wang J R,Schmugge T J.An empirical model for the complex dielectric permittivity of soils as a function of water content[J].IEEE Transactions on Geoscience and Remote Sensing,1980(4):288-295.
    [9]Dobson MC,Ulaby F T,Hallikainen MT,et al.Microwave dielectric behavior of wet soil-Part II:dielectric mixing models[J].IEEE Transactions on Geoscience and Remote Sensing,1985(1):35-46.
    [10]Or D,Wraith J M.Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry:a physical model[J].Water Resources Research,1999,35(7):371-383.
    [11]Boyarskii D A,Tikhonov V V,Komarova N Y.Model of dielectric constant of bound water in soil for applications of microwave remote sensing-abstract[J].Journal of Electromagnetic Waves and Applications,2002,16(3):411-412.
    [12]Mironov V L,Dobson MC,Kaupp V H,et al.Generalized refractive mixing dielectric model for moist soils[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):773-785.
    [13]He H,Dyck M.Application of multiphase dielectric mixing models for understanding the effective dielectric permittivity of frozen soils[J].Vadose Zone Journal,2013,12(1):2-22.
    [14]Tikhonov V V.Model of complex dielectric constant of wet and frozen soil in the 1~40 GHz frequency range[J].Geoscience and Remote Sensing Symposium,1994(3):1576-1578.
    [15]Tao Gaoliang,Bai Liang,Zhuang Xinshan,et al.Experimental study on meso pore based on soil slice technique and its distribution describing[J].Journal of Glaciology and Geocryology,2016,38(4):955-962.[陶高梁,柏亮,庄心善,等.基于土壤切片技术的细观孔隙实验研究及其分布规律表征[J].冰川冻土,2016,38(4):955-962.]
    [16]Zhu Jianqun,Gong Yan,Hu Dawei,et al.Research on shrinkage characteristics of red clay with drying and wetting cycles[J].Journal of Glaciology and Geocryology,2016,38(4):1028-1035.[朱建群,龚琰,胡大为,等.干湿循环作用下红黏土收缩特征研究[J].冰川冻土,2016,38(4):1028-1035.]
    [17]Wang Dingjian,Tang Huiming,Zhang Yahui,et al.Research progress on mechanical tests and properties of coarse-grained soil[J].Journal of Glaciology and Geocryology,2016,38(4):943-954.[汪丁建,唐辉明,张雅慧,等.粗粒土试验与力学特性研究现状[J].冰川冻土,2016,38(4):943-954.]
    [18]Landau L D,Bell J S,Kearsley MJ,et al.Electrodynamics of continuous media[M].Amsterdam,Holland:Elsevier,2013.
    [19]Sillars R W.The properties of a dielectric containing semiconducting particles of various shapes[J].Institution of Electrical Engineers-Proceedings of the Wireless Section of the Institution,1937,12(35):139-155.
    [20]Osborn J A.Demagnetizing factors of the general ellipsoid[J].Physical Review,1945,67(11/12):351-357.
    [21]Doyle W T,Jacobs I S.The influence of particle shape on dielectric enhancement in metal-insulator composites[J].Journal of Applied Physics,1992,71(8):3926-3936.
    [22]Polder D,Santeen J H V.The effective permeability of mixtures of solids[J].Physica,1946,12(5):257-271.
    [23]Loor G P D.Method of obtaining information on the internal dielectric constant of mixtures[J].Applied Scientific Research,1954,3(1):479-482.
    [24]Sihvola A,Lindell I V.Polarizability and effective permittivity of layered and continuously inhomogeneous dielectric spheres[J].Journal of Electromagnetic Waves and Applications,1989,3(1):37-60.
    [25]Clark S.P.Handbook of Physical Constants[M].NewYork:The Geological Society of America,1966.
    [26]Zolotarev V M,Morozov V N,Smirnova E V.Optical constants of natural and industrial media[M].Russian:Leningrad Izdatel'atvo Khimiia,1984.
    [27]Mtzler C.Applications of the interaction of microwaves with the natural snowcover[J].Remote Sensing Reviews,1987,2(2):259-387.
    [28]Liebe H J,Hufford G A,Manabe T.A model for the complex permittivity of water at frequencies below1 THz[J].International Journal of Infrared and Millimeter Waves,1991,12(7):659-675.
    [29]Anderson D M,Tice A R.The unfrozen interfacial phase in frozen soil water systems[M].Heidelberg,Berlin:Springer,1973:107-124.
    [30]Babcock K.Theory of the chemical properties of soil colloidal systems at equilibrium[J].Hilgardia,1963,34(11):417-542.
    [31]Van Olphen H.An introduction to clay colloid chemistry[J].Soil Science,1964,97(4):290.
    [32]Jin Yaqiu.Remote sensing theory of electromagnetic scattering and thermal radiation[M].Beijing:Science Press,1993.[金亚秋.电磁散射和热辐射的遥感理论[M].北京:科学出版社,1993.]