采用含硫铁化学污泥作为反硝化电子供体进行焦化废水中总氮深度去除
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Advanced Nitrogen Removal from Coking Wastewater Using Sulfide Iron-containing Sludge as a Denitrification Electron Donor
  • 作者:付炳炳 ; 潘建新 ; 马景德 ; 王丰 ; 吴海珍 ; 韦朝海
  • 英文作者:FU Bing-bing;PAN Jian-xin;MA Jing-de;WANG Feng;WU Hai-zhen;WEI Chao-hai;School of Environment and Energy,South China University of Technology;School of Biology and Biological Engineering,South China University of Technology;Key Laboratory of Pollution Control and Ecological Restoration in Industry Clusters,Ministry of Education;
  • 关键词:硫铁泥 ; 资源化 ; 焦化废水 ; 自养反硝化 ; 深度脱氮
  • 英文关键词:sludge containing sulfur and iron;;resource utilization;;coking wastewater;;autotrophic denitrification;;advanced nitrogen removal
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:华南理工大学环境与能源学院;华南理工大学生物科学与工程学院;工业聚集区污染控制与生态修复教育部重点实验室;
  • 出版日期:2018-01-24 11:07
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(21377040,51778283);; 广东省应用型科技研发专项(2015B020235005);; 广东省科技计划项目(2015A020215008)
  • 语种:中文;
  • 页:HJKZ201807033
  • 页数:9
  • CN:07
  • ISSN:11-1895/X
  • 分类号:263-271
摘要
城市污水处理和大部分的工业废水处理工艺的出水总氮普遍难以达标排放,基于进水水质的C/N值不稳定、提高回流比造成水力负荷增大、降低反应动力学并且耗能、投加有机碳源带来二次污染以及高污泥产率等问题,急需寻求一种节能降耗、操作简单的深度脱氮方法.对此,利用含硫工业废水预处理产生的含硫铁化学污泥作为固相电子供体进行自养反硝化深度脱氮,实验过程中,以焦化废水二级生物出水作为研究对象,考察脱氮性能、硫铁泥转变过程及微生物群落变化,求出废水深度脱氮新工艺的优化反应条件与效果范围.当进水NO_3~--N、NO_2~--N浓度分别是(74.54±0.57)mg·L~(-1)、(1.11±0.19)mg·L~(-1),水力停留时间为18 h时,对应出水浓度分别降低至(2.78±1.08)mg·L~(-1)、(2.87±0.71)mg·L~(-1);TON(NO_3~--N+NO_2~--N)去除率高达90.0%;NO_3~--N还原速率和NO_2~--N累积速率分别为12.06 mmol·(L·d)-1、7.74 mmol·(L·d)-1.结果表明,以副产物化学硫铁泥作为电子供体深度脱氮有潜在的工程应用价值,以水处理工艺过程中原位利用废物,解决部分富硫铁化学污泥后续处理问题,表现出资源化利用的综合特征.
        In general,it is difficult to reach the total nitrogen discharge standard in the effluent after municipal and industrial wastewater treatment. The problems hindering advanced denitrification include an unstable C/N ratio in the influent wastewater,increased hydraulic loading with increasing reflux ratio,reduced reaction kinetics,high energy consumption,and secondary pollution and high sludge yield resulting from addition of organic carbon sources. Therefore,deep denitrification with the advantages of energy savings and easy operation is urgently needed. To address these issues,chemical iron sulfide sludge,collected after the pretreatment of sulfur-containing industrial wastewater,was used as a solid-phase electron donor to perform advanced denitrification using autotrophic denitrifiers. In this study,the secondary biological effluent of coking wastewater was the influent for denitrification and the performance of denitrification,transformation of sulfide and iron in the sludge,and microbial community changes were investigated. The optimal reaction conditions and effect range of the technology for deep denitrification of wastewater were then calculated. When the concentrations of NO_3~--N and NO_2~--N in the influent were( 74. 54 ± 0. 57) and( 1. 11 ± 0. 19) mg·L~(-1),respectively,the corresponding concentrations in the effluent were reduced to( 2. 78 ± 1. 08) and( 2. 87 ± 0. 71) mg·L~(-1),respectively,with a hydraulic retention time( HRT) of 18 h. The removal rate of TON( NO_3~--N + NO_2~--N) was as high as 90. 0%,of which the reduction rate of NO_3~--N and the accumulation rate of NO_2~--N were 12. 06 and 7. 74 mmol·( L·d)-1,respectively. This study showed that the use of chemical sulfide iron sludge as an electron donor for deep denitrification is of practical importance,as it could simplify the subsequent treatment of sulfur-and iron-rich chemical sludge,finally reaching the goal of resource utilization.
引文
[1]唐丹琦,王娟,郑天龙,等.聚乳酸/淀粉固体缓释碳源生物反硝化研究[J].环境科学,2014,35(6):2236-2240.
    [2]Li P,Xing W,Zuo J,et al.Hydrogenotrophic denitrification for tertiary nitrogen removal from municipal wastewater using membrane diffusion packed-bed bioreactor[J].Bioresource Technology,2013,144:452-459.
    [3]Li P,Zuo J,Xing W,et al.Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent[J].Journal of Environment Sciences,2013,25(10):1972-1979.
    [4]李斌,郝瑞霞.固体纤维素类废物作为反硝化碳源滤料的比选[J].环境科学,2013,34(4):1428-1434.
    [5]Shen Z Q,Wang J L.Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier[J].Bioresource Technology,2011,102(19):8835-8838.
    [6]Poutiainen H,Laitinen S,Pradhan S,et al.Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source[J].Environmental Technology,2010,31(6):617-623.
    [7]Xu G R,Yan Z C,Wang N,et al.Ferric coagulant recovered from coagulation sludge and its recycle in chemically enhanced primary treatment[J].Water Science&Technology,2009,60(1):211-219.
    [8]Xu H B,Scherrenberg S M,van Lier J B.Dissolved oxygen,COD,nitrogen and phosphorus profiles in a continuous sand filter used for WWTP effluent reclamation[J].Water Science&Technology,2012,66(7):1511-1518.
    [9]Kramer J P,Wouters J W,Noordink M P M,et al.Dynamic denitrification of 3,600 m3/h sewage effluent by moving bed biofiltration[J].Water Science&Technology,2000,41(4-5):29-33.
    [10]Vasiliadou I A,Karanasios K A,Pavlou S,et al.Hydrogenotrophic denitrification of drinking water using packedbed reactors[J].Desalination,2009,248(1):859-868.
    [11]Ahmed Z,Kim S M,Kim I S,et al.Nitrification and denitrification using biofilters packed with sulfur and limestone at a pilot-scale municipal wastewater treatment plant[J].Environmental Technology,2012,33(11):1271-1278.
    [12]Kong Z,Feng C P,Chen N,et al.A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification(SISSAD)for domestic wastewater treatment[J].Bioresource Technology,2014,159:272-279.
    [13]Wang S H,Liang P,Wu Z Q,et al.Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent[J].Environmental Science and Pollution Research,2015,22(1):415-424.
    [14]Li R H,Morrison L,Collins G,et al.Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J].Water Research,2016,96:32-41.
    [15]袁莹,周伟丽,王晖,等.不同电子供体的硫自养反硝化脱氮实验研究[J].环境科学,2013,34(5):1835-1844.
    [16]Li H B,Zhou B H,Tian Z Y,et al.Efficient biological nitrogen removal by Johannesburg-Sulfur autotrophic denitrification from low COD/TN ratio municipal wastewater at low temperature[J].Environmental Earth Sciences,2015,73(9):5027-5035.
    [17]赵晴,杨伟明,王瑶,等.硫化物自养反硝化细菌颗粒污泥及其物化特征[J].环境工程学报,2017,11(6):3884-3890.
    [18]Kong Z,Li L,Feng C P,et al.Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyritebased autotrophic denitrification for domestic wastewater treatment[J].Bioresource Technology,2016,211:125-135.
    [19]Ge H Q,Zhang L S,Batstone D J,et al.Impact of iron salt dosage to sewers on downstream anaerobic sludge digesters:sulfide control and methane production[J].Journal of Environmental Engineering,2013,139(4):594-601.
    [20]江峰,林婷婷.硫化物对污水反硝化效率的影响研究[J].广东化工,2013,40(16):134-135,98.
    [21]Zhang L S,Keller J,Yuan Z G.Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing[J].Water Research,2009,43(17):4123-4132.
    [22]Bozkurt S,Moreno L,Neretnieks I.Long-term processes in waste deposits[J].Science of the Total Environment,2000,250(1-3):101-121.
    [23]Brock T D,Od'ea K.Amorphous ferrous sulfide as a reducing agent for culture of anaerobes[J].Applied and Environmental Microbiology,1977,33(2):254-256.
    [24]Gong Y Y,Tang J C,Zhao D Y.Application of iron sulfide particles for groundwater and soil remediation:a review[J].Water Research,2016,89:309-320.
    [25]Etique M,Zegeye A,Grégoire B,et al.Nitrate reduction by mixed iron(II-III)hydroxycarbonate green rust in the presence of phosphate anions:the key parameters influencing the ammonium selectivity[J].Water Research,2014,62:29-39.
    [26]Wei Y Y,Dai J,Mackey H R,et al.The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control[J].Water Research,2017,122:226-233.
    [27]Liu J,Ou H S,Wei C H,et al.Novel multistep physical/chemical and biological integrated system for coking wastewater treatment:technical and economic feasibility[J].Journal of Water Process Engineering,2016,10:98-103.
    [28]曹臣,韦朝海,杨清玉,等.废水处理生物出水中COD构成的解析——以焦化废水为例[J].环境化学,2012,31(10):1494-1501.
    [29]苏晓磊,刘雪洁,梁鹏,等.硫-硫铁复合床深度脱氮除磷[J].化学工业与工程,2015,32(4):63-67.
    [30]Jrgensen C J,Jacobsen O S,Elberling B,et al.Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J].Environmental Science&Technology,2009,43(13):4851-4857.
    [31]TorrentóC,Cama J,Urmeneta J,et al.Denitrification of groundwater with pyrite and Thiobacillus denitrificans[J].Chemical Geology,2010,278(1-2):80-91.
    [32]Christianson L,Summerfelt S.Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters[J].Aquacultural Engineering,2014,60:1-5.
    [33]Liu L H,Koenig A.Use of limestone for p H control in autotrophic denitrification:batch experiments[J].Process Biochemistry,2002,37(8):885-893.
    [34]Li R,Feng C P,Hu W W,et al.Woodchip-sulfur based heterotrophic and autotrophic denitrification(WSHAD)process for nitrate contaminated water remediation[J].Water Research,2016,89:171-179.
    [35]Poulin B A,Ryan J N,Aiken G R.Effects of iron on optical properties of dissolved organic matter[J].Environmental Science&Technology,2014,48(17):10098-10106.
    [36]Chen C M,Dynes J J,Wang J,et al.Properties of Fe-organic matter associations via coprecipitation versus adsorption[J].Environmental Science&Technology,2014,48(23):13751-13759.
    [37]Chen C M,Kukkadapu R,Sparks D L.Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite:implications for carbon dynamics[J].Environmental Science&Technology,2015,49(18):10927-10936.
    [38]王丹慧,张振华,李萍,等.Fe2O3H2S腐蚀产物的XPS研究[J].腐蚀科学与防护技术,2017,29(3):257-260.
    [39]Dopson M,Lindstrom E B.Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J].Applied and Environmental Microbiology,1999,65(1):36-40.
    [40]Madhaiyan M,Poonguzhali S,Saravanan V S,et al.Rhodanobacter glycinis sp.nov.,a yellow-pigmented gammaproteobacterium isolated from the rhizoplane of field-grown soybean[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(6):2023-2028.