地空信道基于OFDM/OQAM系统的波形自适应算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Waveform adaptive algorithm for OFDM/OQAM system under air-ground channel
  • 作者:李环宇 ; 杨超 ; 李燕龙 ; 王波
  • 英文作者:Li Huanyu;Yang Chao;Li Yanlong;Wang Bo;Key Laboratory of Cognitive Radio & Information Processing Information Processing,Guilin University of Electronic Technology;Science & Technology on Information Transmission & Dissemination in Communication Networks Laboratory,The 54th Research Institute of China Electronics Technology Group Corporation;
  • 关键词:地空信道 ; OFDM/OQAM ; 波形自适应算法 ; 扩展高斯函数
  • 英文关键词:air-ground channel;;OFDM/OQAM;;waveform adaptive algorithm;;extended Gaussian function
  • 中文刊名:JSYJ
  • 英文刊名:Application Research of Computers
  • 机构:桂林电子科技大学认知无线电与信息处理省部共建教育部重点实验室;中国电子科技集团公司第54研究所通信网信息传输与分发技术重点实验室;
  • 出版日期:2018-02-08 17:54
  • 出版单位:计算机应用研究
  • 年:2019
  • 期:v.36;No.328
  • 基金:国家自然科学基金资助项目(61371107);; 广西无线宽带通信与信号处理重点实验室基金基金资助项目(GXKL061501);; 认知无线电与信息处理教育部重点实验室2016年主任基金资助项目(LD16112X);; 认知无线电与信息处理教育部重点实验室2015年主任基金资助项目(CRKL150111)
  • 语种:中文;
  • 页:JSYJ201902051
  • 页数:5
  • CN:02
  • ISSN:51-1196/TP
  • 分类号:235-238+243
摘要
传统的正交频分复用/偏移正交幅度调制(OFDM/OQAM)系统波形自适应设计主要针对具有非指数型时延功率谱和非U型多普勒功率谱的信道模型对波形进行优化,而实际中,波形自适应设计会因不同的信道模型产生不同的信道匹配准则系数。结合地空信道模型和扩展高斯函数的特性,在传统基于信干噪比(SINR)优化的OFDM/OQAM系统波形自适应算法的基础上提出一种新的OFDM/OQAM系统波形自适应设计算法。该算法引入信道匹配系数β,通过信道匹配准则建立波形时频域间隔与信道最大多径时延、最大多普勒频移的关系,再结合传统SINR优化函数计算扩展因子参数,将参数反馈给发送端并调整发送端和接收端的滤波器达到波形自适应的目的。仿真结果表明,4QAM和16QAM调制下,信道匹配系数β的引入在系统误码性能上均有1. 0 d B以上的改善。
        The conventional adaptive waveform design of orthogonal frequency division multiplexing/offset quadrature amplitude modulation(OFDM/OQAM) system are mainly for the channel model of non-exponential-type delay power spectrum and non-U-type Doppler power spectrum. However,waveform adaptive design results in different channel matching criterion coefficients due to different channel models in practice. Therefore,this paper discussed the characteristics of ground air channel model and extended Gaussian function and proposed a new OFDM/OQAM waveform adaptive algorithm based on the traditional SINR-adaptive waveform design. This algorithm introduced a matching coefficient β into the traditional waveform matching criterion,which established the relation between the time-frequency domain and the maximum multipath delay-Doppler frequency shift of the waveform. Combined with the traditional optimization function of SINR,it optimized the parameters of the pulse shaping filter and then fed back to the transmitter to adjust the filter banks at the transmitter and receiver. Simulation results show that,under the modulation of 4QAM and 16 QAM,the channel matching coefficient β has an improvement of 1. 0 d B or more in the system error performance.
引文
[1] Viholainen A,Ihalainen T,Stitz T H,et al. Prototype filter design for filter bank based multicarrier transmission[C]//Proc of European Signal Processing Conference. Piscataway,NJ:IEEE Press,2010:1359-1363.
    [2] Sharique M,Chaturvedi A K. A new family of time-limited Nyquist pulses for OFDM systems[J]. IEEE Communications Letters,2016,20(10):1943-1946.
    [3]陈达. OQAM-OFDM无线通信系统关键技术研究[D].武汉:华中科技大学,2015.(Chen Da. Research on key technology of OQAMOFDM communication system[D]. Wuhan:Huazhong University of Science and Technology,2015.)
    [4] Dandach Y,Siohan P. Design method of OFDM/OQAM systems using a weighted time-frequency localization criterion[C]//Proc of European Signal Processing Conference. Piscataway,NJ:IEEE Press,2010:70-74.
    [5] Kozek W,Molisch A F. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels[J]. IEEE Journal on Selected Areas in Communications,1998,16(8):1579-1589.
    [6] Schafhuber D,Matz G,Hlawatsch F. Pulse-shaping OFDM/BFDM systems for time-varying channels:ISI/ICI analysis,optimal pulse design,and efficient implementation[C]//Proc of IEEE International Symposium on Personal,Indoor and Mobile Radio Communications. Piscataway,NJ:IEEEPress,2002:1012-1016.
    [7] Han Fangming,Zhang Xianda. Wireless multicarrier digital transmission via Weyl-Heisenberg frames over time-frequency dispersive channels[J]. IEEE Trans on Communications,2009,57(6):1721-1733.
    [8] Sahin A,Guvenc I,Arslan H. A survey on multicarrier communications:prototype filters,lattice structures,and implementation aspects[J]. IEEE Communications Surveys&Tutorials,2012,16(3):1312-1338.
    [9] Matz G,Schafhuber D,Grochenig K,et al. Analysis,optimization,and implementation of low-interference wireless multicarrier systems[J].IEEE Trans on Wireless Communications,2007,6(5):1921-1931.
    [10]胡苏,武刚,李少谦. OFDM/OQAM系统自适应波形设计及多址接入系统[J].电子与信息学报,2012,34(5):1214-1219.(Hu Su,Wu Gang,Li Shaoqian. Adaptive waveform design and multiple access system for OFDM/OQAM system[J]. Journal of Electronics and Information Technology,2012,34(5):1214-1219.)
    [11]Goto D,Yamazato T,Mongol B. Gaussian pulse shape optimization of BFDM in time-frequency dispersive channels[C]//Proc of Vehicular Technology Conference. Piscataway,NJ:IEEE Press,2012:70-74.
    [12]Ptzold M,Hajri N,Youssef N. Analysis of the level-crossing rate and average duration of fades of WSSUS channels[C]//Proc of European Conference on Antennas and Propagation. Piscataway,NJ:IEEE Press,2017.
    [13]Haas E. Aeronautical channel modeling[J]. IEEE Trans on Vehicular Technology,2002,51(2):254-264.
    [14]Sun Ruoyu,Matolak D W,Rayess W. Air-ground channel characterization for unmanned aircraft systems,part IV:airframe shadowing[J].IEEE Trans on Vehicular Technology,2017,66(9):7643-7652.
    [15]程国兵. OFDM/OQAM系统中的关键技术研究[D].成都:电子科技大学,2013.(Cheng Guobin. Research on key technology in OFDM/OQAM system[D]. Chengdu:University of Electronic Science and Technology of China,2013.)