核热推进包覆燃料颗粒耐高温性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on High Temperature Resistance of TRISO-coated Fuel Particles for Nuclear Thermal Propulsion
  • 作者:张良 ; 曾强 ; 潘小强 ; 李圆圆
  • 英文作者:ZHANG Liang;ZENG Qiang;PAN Xiaoqiang;LI Yuanyuan;Nuclear Power Institute of China;
  • 关键词:核热推进 ; TRISO包覆燃料颗粒 ; 耐高温性能 ; 压碎强度 ; 破损率
  • 英文关键词:nuclear thermal propulsion;;TRISO-coated fuel particles;;high temperature resistance;;crushing strength;;percentage of damage
  • 中文刊名:ZRHT
  • 英文刊名:Manned Spaceflight
  • 机构:中国核动力研究设计院;
  • 出版日期:2019-04-15
  • 出版单位:载人航天
  • 年:2019
  • 期:v.25;No.88
  • 基金:载人航天预先研究项目(050201)
  • 语种:中文;
  • 页:ZRHT201902010
  • 页数:6
  • CN:02
  • ISSN:11-5008/V
  • 分类号:63-68
摘要
为确定TRISO包覆燃料颗粒作为核热推进系统燃料的适用性,采用ZrO_2模拟TRISO核燃料中UO_2核芯,对包覆颗粒的耐高温性能进行了研究。在氩气环境中分别进行1800 K~2300 K耐高温性能研究,统计了颗粒在不同温度下的破损情况及压碎强度,并利用体视显微镜、SEM等手段观察颗粒形貌。研究发现,2000 K时包覆颗粒出现破损,2200 K时颗粒破损率已高达70%;当温度不超过2000 K时,包覆颗粒压碎强度变化不明显,而2000 K以上时,SiC层断裂形式由以"穿晶断裂"为主逐渐转变为以"沿晶断裂"为主,颗粒压碎强度随温度的升高显著降低。
        To determine the applicability of TRISO-coated fuel particles in nuclear thermal propulsion system, the high temperature resistance of the coated particles was studied and ZrO_2 was used to simulate the UO_2 core in the fuel. The high temperature resistance experiments were carried out in an Ar atmosphere with the temperature ranging from 1800 K to 2300 K. The percentage of damage and crushing strength of the particles at various temperatures were obtained. The morphology of particles was observed by stereomicroscope and SEM. It was found that when the temperature was not over 2000 K, the crushing strength of the particles did not change significantly. However, when the temperature was over 2000 K, the particle damage appeared and the crushing strength decreased significantly with the rise of the temperature. The percentage of damage reached 70% at 2200 K. At the same time, the fracture mode of SiC layer changed gradually from "transcrystalline fracture"to "intercrystalline fracture" when the temperature was over 2000 K.
引文
[1] Gabrielli R A, Herdrich G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79(11):92-113.
    [2] Ludewig H,Powell J R,Todosow M,et al. Design of particle bed reactors for the space nuclear thermal propulsion program [J]. Progress in Nuclear Energy,1996, 30 (1): 1-65.
    [3] 杨林, 刘兵, 邵友林,等. 高温气冷堆包覆燃料颗粒破损机制及失效模型[J]. 核科学与工程, 2010, 30(3):210-215.Yang L, Liu B, Shao Y L, et al. The failure mechanisms of HTR coated particle fuel and computer code[J].Chinese Journal of Nuclear Science and Engineering, 2010, 30(3):210-215.(in Chinese)
    [4] Hosemann P, Martos J N, Frazer D, et al. Mechanical characteristics of SiC coating layer in TRISO fuel particles[J]. Journal of Nuclear Materials, 2013, 442(1-3):133-142.
    [5] Venneri P F, Kim Y. A feasibility study on low enriched uranium fuel for nuclear thermal rockets-II: Rocket and reactor performance[J]. Progress in Nuclear Energy, 2016, 87: 156-167.
    [6] 解家春, 霍红磊, 苏著亭,等. 核热推进技术发展综述[J]. 深空探测学报, 2017(5):417-429.Xie J C, Huo H L, Su Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017(5):417-429. (in Chinese)
    [7] Tang C, Tang Y, Zhu J, et al. Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2002, 218(1-3): 91-102.
    [8] 张永栋, 林俊, 朱天宝, 等. 球形燃料元件温度分布对包覆燃料颗粒失效概率的影响[J]. 核技术, 2016, 39(1): 0106031-0106036.Zhang Y D, Lin J, Zhu T B, et al. Effects of temperature distribution on failure probability of coated particles in spherical fuel elements[J]. Nuclear Techniques,2016, 39(1): 0106031-0106036.(in Chinese)
    [9] DeMange P, Marian J, Caro M, et al. TRISO-fuel element thermo-mechanical performance modeling for the hybrid LIFE engine with Pu fuel blanket[J]. Journal of Nuclear Materials, 2010, 405(2): 144-155.
    [10] Liu R, Liu B, Zhang K, et al. High temperature oxidation behavior of SiC coating in TRISO coated particles[J]. Journal of Nuclear Materials, 2014, 453(1-3): 107-114.
    [11] 王金宇, 周慧辉, 昝元锋, 等. 基于激光技术的球形燃料颗粒SiC包覆材料热冲击试验研究[J]. 载人航天, 2018, 24(4): 436-441.Wang J Y, Zhou H H, Zan Y F, et al. Thermal shock test of SiCcoating layer of spherical fuel particles based on laser technique[J]. Manned Spaceflight, 2018, 24(4): 436-441.(in Chinese)
    [12] 张永栋. TRISO包覆燃料颗粒结构和失效行为研究[D]. 上海: 中国科学院上海应用物理研究所, 2016: 9-10.Zhang Y D. Research on TRISO Particle’s Structure and Failure Behavior[D].Shanghai: Shanghai Institute of Applied Physics of Chinese Academy of Sciences, 2016: 9-10.(in Chinese)
    [13] Petti D A, Buongiorno J, Maki J T, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nuclear Engineering and Design, 2003, 222(2-3): 281-297.
    [14] Kirchhofera R, Hunnb J D, Demkowiczc P A, et al. Microstructure of TRISO coated particles from the AGR-1 experiment I: SiC grain size and grain boundary character[J]. Journal of Nuclear Materials, 2013, 432(1-3):127-134.
    [15] Lodhe M, Selvam A, Udayakumar A, et al. Effect of polycarbosilane addition to a mixture of rice husk and coconut shell on SiC whisker growth[J]. Ceramics International, 2016, 42(2):2393-2401.
    [16] Lebedev A A, Lebedev S P, Nikitina I P, et al. Investigation of heterostructures 3C-SiC/15R-SiC[J]. 2018, 15(1):60-64.
    [17] 周诗民, 余超, 祝洪喜,等. 三元碳化物Al4SiC4对无压烧结β-SiC的影响[J]. 机械工程材料, 2015, 39(2): 45-49.Zhou S M, Yu C, Zhu H X, et al. Effects of ternary carbide of Al4SiC4 on pressureless sintering of β-SiC[J].Materials for Mechanical Engineering, 2015, 39(2): 45-49.(in Chinese)
    [18] Zeng X M, Lai A, Gan C L, et al. Crystal orientation dependence of the stress-induced martensitic transformation in zirconia-based shape memory ceramics[J]. Acta Materialia, 2016, 116:124-135.