海洋平台用钢EH420耐火性能的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Study on Fire-Resistant Performance of Steel EH420 for Off-Shore Drilling Platform
  • 作者:刘智良 ; 董瑞峰
  • 英文作者:Liu Zhiliang;Dong Ruifeng;School of Materials and Engineering,Inner Mongolia University of Technology;
  • 关键词:海洋平台用钢EH420 ; 耐火性 ; 组织 ; 拉伸断口
  • 英文关键词:Steel EH420 for Offshore Drilling Platform;;Fire Resistance;;Structure;;Tensile Fracture
  • 中文刊名:TSGA
  • 英文刊名:Special Steel
  • 机构:内蒙古工业大学材料科学与工程学院;
  • 出版日期:2018-01-30
  • 出版单位:特殊钢
  • 年:2018
  • 期:v.39;No.219
  • 基金:内蒙古工业大学基金资助项目(ZD201510)
  • 语种:中文;
  • 页:TSGA201801017
  • 页数:4
  • CN:01
  • ISSN:42-1243/TF
  • 分类号:65-68
摘要
试验用EH420钢(/%:0.20C,0.38Si,1.63Mn,0.007P,0.001S,0.062V,0.017Nb,0.009Ti,0.021Alt,0.38Ni,0.015Cu)20 mm板的生产流程为210 t BOF-LF-RH-230 mm坯连铸-热轧。分别在室温、450、480、500、600℃对EH420钢进行了拉伸试验,并通过扫描电镜观察了拉伸试样断裂形貌和分析了断裂机理。结果表明,该钢室温屈服强度为443 MPa,480℃屈服强度270 MPa,基本为室温屈服强度2/3,因此EH420钢在480℃以下具有耐火性。
        The production flowsheet of 20 mm plate of tested steel EH420(/% : 0. 20 C, 0. 38 Si, 1. 63 Mn, 0. 007 P,0.001 S, 0.062 V, 0.017 Nb,0.009 Ti, 0.021 Alt, 0.38 Ni,0.015 Cu) is 210 t BOF-LF-RH-230 mm slab casing-rolling.The tensile test of steel EH420 is carried out at ambient temperature, 450℃, 480℃, 500℃ and 600℃, the morphology of fracture of steel tensile specimen is observed by scanning electron microscope and the fracture mechanism of steel is analyzed. Results show that the yield strength of steel at ambient temperature is 443 MPa and the yield strength of the steel at480℃ is 270 MPa which is basically equal to two-thirds of the yield strength of steel at ambient temperature, therefore the steel EH420 has fire resistance at less than 480℃.
引文
[1]邵军.舰船用钢研究现状与发展[J].鞍钢技术,2013(4):183-185.
    [2]崔崑.钢的成分、组织与性能(上册)[M].北京:科学出版社,2013:445-448.
    [3]王从曾.材料性能学[M].北京:北京工业大学出版社,2001:3-7,126.
    [4]武拥军,姜周华,梁连科,等.钢的液相线温度的计算[J].钢铁研究学报,2002,14(6):6-9.
    [5]张聪.碳锰钢再结晶行为研究[D].武汉科技大学,2011:11.
    [6]王川,康永林,朱帅,等.超低碳铝镇静钢冷轧薄板再结晶温度及性能研究[J].热加工工艺,2011,40(6):36-39.
    [7]李龙飞,杨王明,孙祖庆.低碳钢在Ac_1点以下温度变形时的铁素体动态再结晶[J].金属学报,2003,39(4):419-425.
    [8]蔺永诚,陈明松,钟掘.形变温度对42CrMo钢塑性成形与动态再结晶的影响[J].材料热处理学报,2009,30(1):70-74.
    [9]郝庆乐,韩静涛,徐海峰.高强硼钢高温软化机制及动态再结晶临界条件[J].材料热处理学报,2016,37(1):230-236.
    [10]Abedi H R,Zarei Hanzalci A and Liu z,et al.Continuous Dynamic Recrystallization in Low Density Steel[J].Materials and Design,2017(114):55-64.
    [11]张星,陈登福,董志华,等.P510L钢连铸坯高温力学性能[J].中国科技论文,2013,8(2):120-123.
    [12]Suzuki H G,Nishimura S and Yamaguchi S.Characteristics of the Embrittlement of Steels Above 600℃[J].Testu-to-Agane,1979,65(14):2038-2046.
    [13]李明关,宋月清,崔舜,等.V5Cr5Ti合金的高温拉伸性能及其断口特征[J].稀有金属,2007,31(4)420423.
    [14]韩孝永.铌、钒、钛在微合金钢中的作用[J].宽厚板,2006,12(1):39-41.
    [15]衣海龙,杜林秀,王国栋,等.铌钒钛与含钛高强钢的高温变形行为[J].东北大学学报(自然科学版),2007,28(10):1369-1373.
    [16]陈样,李言祥.稀土、钒、钛变质处理对高硅铸钢晶粒细化的影响[J].材料热处理学报,2006,27(3):75-80.
    [17]刘正义.机械装备失效分析图谱[M].广东:广东科技出版社,1990:168.
    [18]魏文澜,王建国,冯耀荣,等.10Cr3Mo钢与N80钢的高温力学行为[C].太原:第十一次全国热处理大会论文集,2015:936-940.
    [19]段兴旺,刘建生.316LN钢高温塑性及其断口特征[J].吉林大学学报(工学版),2015,45(2):494-500.